Journal of neurotrauma
-
Journal of neurotrauma · May 2019
Intermittent Administration of Haloperidol after Cortical Impact Injury Neither Impedes Spontaneous Recovery Nor Attenuates the Efficacy of Environmental Enrichment.
The administration of haloperidol (HAL) once-daily for 19 days after experimental traumatic brain injury (TBI) impedes recovery and attenuates the efficacy of environmental enrichment (EE). However, it is unknown how intermittent administration of HAL affects the recovery process when paired with EE. Addressing the uncertainty is relevant because daily HAL is not always warranted to manage TBI-induced agitation in the clinic, and indeed intermittent therapy may be a more common approach. ⋯ No difference in any endpoint was revealed between the TBI + STD + intermittent HAL and TBI + STD + daily VEH groups [p > 0.05]. The results support the hypothesis that HAL is not detrimental when provided intermittently. If translatable to the clinic, intermittent HAL may be used to control TBI-induced agitation without negatively affecting spontaneous recovery or rehabilitative efficacy.
-
Journal of neurotrauma · May 2019
Cerebral Microbleeds Temporarily Become Less Visible or Invisible in Acute Susceptibility Weighted Magnetic Resonance Imaging: A Rat Study.
Previously, we reported human traumatic brain injury cases demonstrating acute to subacute microbleed appearance changes in susceptibility-weighted imaging (SWI-magnetic resonance imaging [MRI]). This study aims to confirm and characterize such temporal microbleed appearance alterations in an experimental model. To elicit microbleed formation, brains of male Sprague Dawley rats were pierced in a depth of 4 mm, in a parasagittal position bilaterally using 159 μm and 474 μm needles, without the injection of autologous blood or any agent. ⋯ Histology confirmed the presence of microbleeds at all time points and in all animals. This study confirmed a general temporary reduction in visibility of microbleeds in the acute phase in SWI. Such short-term appearance dynamics of microbleeds should be considered when using SWI as a diagnostic tool for microbleeds in traumatic brain injury and various diseases.
-
Journal of neurotrauma · May 2019
Clinical TrialElectrophysiological Guidance of Epidural Electrode Array Implantation over the Human Lumbosacral Spinal Cord to Enable Motor Function after Chronic Paralysis.
Epidural electrical stimulation (EES) of the spinal cord has been shown to restore function after spinal cord injury (SCI). Characterization of EES-evoked motor responses has provided a basic understanding of spinal sensorimotor network activity related to EES-enabled motor activity of the lower extremities. However, the use of EES-evoked motor responses to guide EES system implantation over the spinal cord and their relation to post-operative EES-enabled function in humans with chronic paralysis attributed to SCI has yet to be described. ⋯ Motor response latencies were not significantly different between intraoperative recordings and post-operative recordings, indicating that array positioning remained stable. Additionally, EES enabled intentional control of step-like activity in both subjects within the first 5 days of testing. These results suggest that the use of EES-evoked motor responses may guide intraoperative positioning of epidural electrodes to target spinal cord circuitry to enable motor functions after SCI.