Journal of neurotrauma
-
Journal of neurotrauma · Oct 2021
ReviewThe Known Unknowns: An Overview of the State of Blood-based Protein Biomarkers of Mild Traumatic Brain Injury.
Blood-based protein biomarkers have revolutionized several fields of medicine by enabling molecular level diagnosis, as well as monitoring disease progression and treatment efficacy. Traumatic brain injury (TBI) so far has benefitted only moderately from using protein biomarkers to improve injury outcome. Because of its complexity and dynamic nature, TBI, especially its most prevalent mild form (mild TBI; mTBI), presents unique challenges toward protein biomarker discovery and validation given that blood is frequently obtained and processed outside of the clinical laboratory (e.g., athletic fields, battlefield) under variable conditions. ⋯ The ever-increasing sensitivity of assay systems and lack of quality control of samples, combined with the almost complete reliance on antibody-based assay platforms, represent important unsolved issues given that false-negative results can lead to false clinical decision making and adverse outcomes. This article serves as a commentary on the state of mTBI biomarkers and the landscape of significant challenges. We highlight and discusses several biological and methodological "known unknowns" and close with some practical recommendations.
-
Despite multiple prior pharmacological trials in traumatic brain injury (TBI), the search for an effective, safe, and practical treatment of these patients remains ongoing. Given the ease of delivery and rapid absorption into the systemic circulation, inhalational gases that have neuroprotective properties will be an invaluable resource in the clinical management of TBI patients. ⋯ Also, promising new therapies such as hydrogen gas, hydrogen sulfide gas, and nitric oxide are discussed. Moreover, novel therapies such as xenon and argon gases and delivery methods using microbubbles are explored.
-
Journal of neurotrauma · Oct 2021
A longitudinal study of white matter functional network in mild traumatic brain injury.
Some patients after mild traumatic brain injury (mTBI) experience microstructural damages in the long-distance white matter (WM) connections, which disrupts the functional connectome of large-scale brain networks that support cognitive function. Patterns of WM structural damage following mTBI were well documented using diffusion tensor imaging (DTI). However, the functional organization of WM and its association with gray matter functional networks (GM-FNs) and its DTI metrics remain unknown. ⋯ Additionally, enhanced FC between IFOF WM-FN and anterior cerebellar GM-FN was correlated with impaired information processing speed. Our findings provide novel evidence for functional and structural alteration of WM-FNs in mTBI patients. Importantly, the convergent damage of the IFOF network might imply its crucial role in our understanding of the pathophysiology mechanism of mTBI patients.
-
Journal of neurotrauma · Oct 2021
Free water volume fraction: an imaging biomarker to characterize moderate-to-severe traumatic brain injury.
Traumatic brain injury (TBI) is a major clinical and public health problem with few therapeutic interventions successfully translated to the clinic. Identifying imaging-based biomarkers characterizing injury severity and predicting long-term functional and cognitive outcomes in TBI patients is crucial for treatment. TBI results in white matter (WM) injuries, which can be detected using diffusion tensor imaging (DTI). ⋯ We then presented a patient-specific summary score of WM regions derived using Mahalanobis distance. We observed that MVF at 3 months significantly predicted functional outcome (p = 0.008), executive function (p = 0.005), and processing speed (p = 0.01) measured at 12 months and was significantly correlated with injury severity (p < 0.001). Our findings are an important step toward implementing MVF as a biomarker for personalized therapy and rehabilitation planning for TBI patients.