Journal of neurotrauma
-
Journal of neurotrauma · Oct 2021
Observational StudyDiffusion-weighted imaging reveals distinct patterns of cytotoxic edema in patients with subdural hematomas.
Subdural hematomas (SDHs) are increasingly common and can cause ischemic brain injury. Previous work has suggested that this is driven largely by vascular compression from herniation, although this work was done before the era of magnetic resonance imaging (MRI). We thus sought to study SDH-related ischemic brain injury by looking at patterns of cytotoxic edema on diffusion-weighted MRI. ⋯ In the other pattern (N = 19), patients often presented as awake with less midline shift and developed cytotoxic edema in the cortex adjacent to the SDH outside of typical vascular territories (peri-SDH cytotoxic edema). Both patterns occurred in 1 patient. The peri-SDH cytotoxic edema pattern is a newly described type of secondary injury and may involve direct toxic effects of the SDH, spreading depolarizations, or other mechanisms.
-
Journal of neurotrauma · Oct 2021
Freshly Thawed Cryobanked Human Neural Stem Cells Engraft within Endogenous Neurogenic Niches and Restore Cognitive Function after Chronic Traumatic Brain Injury.
Human neural stem cells (hNSCs) have potential as a cell therapy after traumatic brain injury (TBI). While various studies have demonstrated the efficacy of NSCs from ongoing culture, there is a significant gap in our understanding of freshly thawed cells from cryobanked stocks-a more clinically relevant source. To address these shortfalls, the therapeutic potential of our previously validated Shef-6.0 human embryonic stem cell (hESC)-derived hNSC line was tested after long-term cryostorage and thawing before transplant. ⋯ Importantly, transplantation resulted in improved spatial learning and memory in Morris water maze navigation and reduced risk taking in an elevated plus maze. Investigating potential mechanisms of action, we identified an increase in ipsilateral host hippocampus cornu ammonis (CA) neuron survival, contralateral dentate gyrus (DG) volume, and DG neural progenitor morphology as well as a reduction in neuroinflammation. Together, these findings validate the potential of hNSCs to improve function after TBI and demonstrate that long-term biobanking of cells and thawing aliquots before use may be suitable for clinical deployment.
-
Journal of neurotrauma · Oct 2021
Meta AnalysisPOLAR study revisited: Therapeutic hypothermia in severe brain trauma should not be abandoned.
The benefits of therapeutic hypothermia (TH) in severe traumatic brain injury (sTBI) have been long debated. In 2018, the POLAR study, a high-quality international trial, appeared to end the debate by showing that TH did not improve mortality in sTBI. However, the POLAR-based recommendation to abandon TH was challenged by different investigators. ⋯ We conclude that, because of deviations from the targeted cooling protocol, the overall cooling extent was not sufficiently high in the POLAR study, thus masking the beneficial effects of TH. The current analysis shows that TH is beneficial in sTBI, but only when the COIN is high. Abandoning the use of TH in sTBI may be premature.
-
Despite multiple prior pharmacological trials in traumatic brain injury (TBI), the search for an effective, safe, and practical treatment of these patients remains ongoing. Given the ease of delivery and rapid absorption into the systemic circulation, inhalational gases that have neuroprotective properties will be an invaluable resource in the clinical management of TBI patients. ⋯ Also, promising new therapies such as hydrogen gas, hydrogen sulfide gas, and nitric oxide are discussed. Moreover, novel therapies such as xenon and argon gases and delivery methods using microbubbles are explored.
-
Journal of neurotrauma · Oct 2021
Aging with Traumatic Brain Injury: Deleterious Effects of Injury Chronicity Are Most Pronounced in Later Life.
Understanding the effects of age on longitudinal traumatic brain injury (TBI) outcomes requires attention to both chronic and evolving TBI effects and age-related changes in health and function. The present study examines the independent and interactive effects of aging and chronicity on functional outcomes after TBI. We leveraged a well-defined cohort of individuals who sustained a moderate/severe TBI and received acute inpatient rehabilitation at specialized centers with high follow up rate as part of their involvement in the TBI Model Systems longitudinal study. ⋯ The inflection point at roughly 75 years of age was corroborated by post hoc analyses, dividing the sample by age at 75 years and examining the interaction between age group and chronicity. These findings point to a need for provision of rehabilitation services in the chronic injury period, particularly for those who are over 75 years old. Future work should investigate the underlying mechanisms of this interaction towards the goal of developing interventions and models of care to promote healthy aging with TBI.