Journal of neurotrauma
-
Journal of neurotrauma · Dec 2021
ReviewPhenotyping the Spectrum of Traumatic Brain Injury: A Review and Pathway to Standardization.
It is widely appreciated that the spectrum of traumatic brain injury (TBI), mild through severe, contains distinct clinical presentations, variably referred to as subtypes, phenotypes, and/or clinical profiles. As part of the Brain Trauma Blueprint TBI State of the Science, we review the current literature on TBI phenotyping with an emphasis on unsupervised methodological approaches, and describe five phenotypes that appear similar across reports. However, we also find the literature contains divergent analysis strategies, inclusion criteria, findings, and use of terms. ⋯ Together, these facts confound direct synthesis of the findings. To overcome this, we introduce PhenoBench, a freely available code repository for the standardization and evaluation of raw phenotyping data. With this review and toolset, we provide a pathway toward robust, data-driven phenotypes that can capture the heterogeneity of TBI, enabling reproducible insights and targeted care.
-
Journal of neurotrauma · Dec 2021
ReviewA Review of Implementation Concepts and Strategies Surrounding Traumatic Brain Injury Clinical Care Guidelines.
Despite considerable efforts to advance the science surrounding traumatic brain injury (TBI), formal efforts supporting the current and future implementation of scientific findings within clinical practice and healthcare policy are limited. While many and varied guidelines inform the clinical management of TBI across the spectrum, clinicians and healthcare systems are not broadly adopting, implementing, and/or adhering to them. As part of the Brain Trauma Blueprint TBI State of the Science, an expert workgroup was assembled to guide this review article, which describes: (1) possible etiologies of inadequate adoption and implementation; (2) enablers to successful implementation strategies; and (3) strategies to mitigate the barriers to adoption and implementation of future research.
-
Journal of neurotrauma · Dec 2021
Comparative StudyComparing the Quality of Life After Brain Injury-Overall Scale (QOLIBRI-OS) and Satisfaction with Life Scale (SWLS) as Outcome Measures for Traumatic Brain Injury Research.
It is important to measure quality of life (QoL) after traumatic brain injury (TBI), yet limited studies have compared QoL inventories. In 2579 TBI patients, orthopedic trauma controls, and healthy friend control participants, we compared the Quality of Life After Brain Injury-Overall Scale (QOLIBRI-OS), developed for TBI patients, to the Satisfaction with Life Scale (SWLS), an index of generic life satisfaction. We tested the hypothesis that group differences (TBI and orthopedic trauma vs. healthy friend controls) would be larger for the QOLIBRI-OS than the SWLS and that the QOLIBRI-OS would manifest more substantial changes over time in the injured groups, demonstrating more relevance of the QOLIBRI-OS to traumatic injury recovery. (1) We compared the group differences (TBI vs. orthopedic trauma control vs. friend control) in QoL as indexed by the SWLS versus the QOLIBRI-OS and (2) characterized changes across time in these two inventories across 1 year in these three groups. ⋯ The QOLIBRI-OS better captured expected improvements in QoL during the injury recovery course in injured groups than the SWLS, which demonstrated smaller changes over time. TBI severity was not consistently or robustly associated with self-reported QoL. The findings imply that, as compared with the SWLS, the QOLIBRI-OS appears to identify QoL issues more specifically relevant to traumatically injured patients and may be a more appropriate primary QoL outcome measure for research focused on the sequelae of traumatic injuries.
-
Journal of neurotrauma · Dec 2021
Review Case ReportsOptimizing the timing of peripheral nerve transfers for functional re-animation in cervical spinal cord injury: a conceptual framework.
Loss of upper extremity function following spinal cord injury (SCI) can have devastating consequences on quality of life. Peripheral nerve transfer surgery aims to restore motor control of upper extremities following cervical SCI and is poised to revolutionize surgical management in this population. The surgery involves dividing an expendable donor nerve above the level of the spinal lesion and coapting it to a recipient nerve arising from the lesional or infralesional segment of the injured cord. ⋯ This complex topic is reviewed, with a focus on expectations for spontaneous recovery within upper motor neuron components of the injury, balanced against the need for expeditious re-innervation for lower motor neuron elements of the injury. The discussion also considers the case of a patient with C6 motor complete SCI in whom myotomes without electrodiagnostic evidence of denervation spontaneously improved by 6 months post-injury, thereby adjusting the surgical plan. The relevant concepts are integrated into a clinical algorithm with recommendations that consider maximal opportunity for spontaneous clinical improvement post-injury while avoiding excessive delays that may adversely affect patient outcomes.
-
Journal of neurotrauma · Dec 2021
ReviewRoadmap for Advancing Preclinical Science in Traumatic Brain Injury.
Pre-clinical models of disease have long played important roles in the advancement of new treatments. However, in traumatic brain injury (TBI), despite the availability of numerous model systems, translation from bench to bedside remains elusive. Integrating clinical relevance into pre-clinical model development is a critical step toward advancing therapies for TBI patients across the spectrum of injury severity. ⋯ The wide range of pre-clinical models reflect substantial attempts to replicate multiple aspects of TBI sequelae in humans. Although these models reveal multiple putative mechanisms underlying TBI pathophysiology, failures to translate these findings into successful clinical trials call into question the clinical relevance and applicability of the models. Here, we address the promises and pitfalls of pre-clinical models with the goal of evolving frameworks that will advance translational TBI research across models, injury types, and the heterogenous etiology of pathology.