Journal of neurotrauma
-
Journal of neurotrauma · Jun 2024
Multicenter StudyThe Influence of Coagulopathy on Radiographic and Clinical Outcomes in Patients Undergoing Middle Meningeal Artery Embolization as Standalone Treatment for Nonacute Subdural Hematomas.
Middle meningeal artery embolization (MMAE) is emerging as a safe and effective standalone intervention for non-acute subdural hematomas (NASHs); however, the risk of hematoma recurrence after MMAE in coagulopathic patients is unclear. To characterize the impact of coagulopathy on treatment outcomes, we analyzed a multi-institutional database of patients who underwent standalone MMAE as treatment for NASH. We classified 537 patients who underwent MMAE as a standalone intervention between 2019 and 2023 by coagulopathy status. ⋯ Antiplatelet agent use (ticagrelor, prasugrel, or clopidogrel) was also predictive of surgical rescue (OR 4.38; 95% CI 1.51-12.72; p = 0.01), and patients with thrombocytopenia had significantly increased odds of in-hospital mortality (OR 5.16; 95% CI 2.38-11.20; p < 0.01). There were no differences in follow-up radiographic and other clinical outcomes in patients with and those without coagulopathy. Patients with coagulopathy undergoing standalone MMAE for treatment of NASH may have greater risk of requiring surgical rescue (particularly in patients using antiplatelet agents), and in-hospital mortality (in thrombocytopenic patients).
-
Journal of neurotrauma · Jun 2024
Predicting Hematoma Expansion and Prognosis in Cerebral Contusions: A Radiomics-Clinical Approach.
Hemorrhagic progression of contusion (HPC) often occurs early in cerebral contusions (CC) patients, significantly impacting their prognosis. It is vital to promptly assess HPC and predict outcomes for effective tailored interventions, thereby enhancing prognosis in CC patients. We utilized the Attention-3DUNet neural network to semi-automatically segment hematomas from computed tomography (CT) images of 452 CC patients, incorporating 695 hematomas. ⋯ Selected radiomic features indicated that irregularly shaped and highly heterogeneous hematomas increased the likelihood of HPC, while larger weighted axial lengths and lower densities of hematomas were associated with a higher risk of poor prognosis. Predictive models that combine radiomic and clinical features exhibit robust performance in forecasting HPC and the risk of poor prognosis in CC patients. Radiomic features complement clinical features in predicting HPC, although their ability to enhance the predictive accuracy of the clinical model for adverse prognosis is limited.
-
Journal of neurotrauma · Jun 2024
Development of a Multimodal Machine Learning-Based Prognostication Model for Traumatic Brain Injury Using Clinical Data and Computed Tomography Scans: A CENTER-TBI and CINTER-TBI Study.
Computed tomography (CT) is an important imaging modality for guiding prognostication in patients with traumatic brain injury (TBI). However, because of the specialized expertise necessary, timely and dependable TBI prognostication based on CT imaging remains challenging. This study aimed to enhance the efficiency and reliability of TBI prognostication by employing machine learning (ML) techniques on CT images. ⋯ The developed model achieved superior performance without the necessity for manual CT assessments (AUC = 0.846 [95% CI: 0.843-0.849]) compared with the model based on the clinical and laboratory variables (AUC = 0.817 [95% CI: 0.814-0.820]) and established CT scoring systems requiring manual interpretations (AUC = 0.829 [95% CI: 0.826-0.832] for Marshall and 0.838 [95% CI: 0.835-0.841] for International Mission for Prognosis and Analysis of Clinical Trials in TBI [IMPACT]). The external validation demonstrated the prognostic capacity of the developed model to be significantly better (AUC = 0.859 [95% CI: 0.857-0.862]) than the model using clinical variables (AUC = 0.809 [95% CI: 0.798-0.820]). This study established an ML-based model that provides efficient and reliable TBI prognosis based on CT scans, with potential implications for earlier intervention and improved patient outcomes.
-
Journal of neurotrauma · Jun 2024
MCC950 attenuates microglial NLRP3-mediated chronic neuroinflammation and memory impairment in a rat model of repeated low-level blast exposure.
Blast-induced traumatic brain injury is typically regarded as a signature medical concern for military personnel who are exposed to explosive devices in active combat zones. However, soldiers as well as law enforcement personnel may be repeatedly exposed to low-level blasts during training sessions with heavy weaponries as part of combat readiness. Service personnel who sustain neurotrauma from repeated low-level blast (rLLB) exposure do not display overt pathological symptoms immediately but rather develop mild symptoms including cognitive impairments, attention deficits, mood changes, irritability, and sleep disturbances over time. ⋯ Animals exposed to rLLB displayed acute and chronic short-term memory impairments and chronic anxiety-like symptoms accompanied by increased microglial activation, NLRP3 expression, and IL-1β release. Treatment with MCC950, an NLRP3 inflammasome complex inhibitor, suppressed microglial activation, reduced NLRP3 expression and IL-1β release, and improved short-term memory deficits after rLLB exposure. Collectively, this study demonstrates that rLLB induces chronic neurobehavioral and neuropathological changes by increasing NLRP3 inflammasome protein expression followed by cytokine IL-1β release.
-
Journal of neurotrauma · Jun 2024
Review Comparative StudyComparing Randomized Controlled Trials of Moderate to Severe Traumatic Brain Injury in Lower to Middle Income Countries versus High Income Countries.
Outcomes from traumatic brain injury (TBI) including death differ significantly between high-, middle-, and low-income countries. Little is known, however, about differences in TBI research across the globe. The objective of this article was to examine randomized controlled trials (RCTs) of moderate-to-severe TBI in high-income countries (HICs) compared with low- and middle-income countries (LMICs), as defined by the World Bank income per capita cutoff of $13,205 US dollars. ⋯ The 62.6% of RCTs from LMICs were conducted in the acute phase post-injury (≤1 month) compared with 42.1% of RCTs from HICs. Of RCTs from LMICs, 92.4% focused on medical/surgical management compared with 52.5% from HICs. Since 2016, more RCTs have been conducted in LMICs than in HICs, indicating the importance of better understanding this pattern of research output.