Journal of clinical anesthesia
-
Randomized Controlled Trial
Processed electroencephalography-guided general anesthesia and norepinephrine requirements: A randomized trial in patients having vascular surgery.
Processed electroencephalography (pEEG) may help clinicians optimize depth of general anesthesia. Avoiding excessive depth of anesthesia may reduce intraoperative hypotension and the need for vasopressors. We tested the hypothesis that pEEG-guided - compared to non-pEEG-guided - general anesthesia reduces the amount of norepinephrine needed to keep intraoperative mean arterial pressure above 65 mmHg in patients having vascular surgery. ⋯ pEEG-guided - compared to non-pEEG-guided - general anesthesia reduced the amount of norepinephrine needed to keep mean arterial pressure above 65 mmHg by about a third in patients having vascular surgery. Whether reduced intraoperative norepinephrine requirements resulting from pEEG-guided general anesthesia translate into improved patient-centered outcomes remains to be determined in larger trials.
-
Nasal cannula and face mask gas flow rates when connecting to the Y-piece of the anesthesia circuit.
To determine the relationship between the delivered gas flows via nasal cannulas and face masks and the set gas flow and the breathing circuit pressure when connecting to the Y-adapter of the anesthesia breathing circuit and using the oxygen blender on the anesthesia machine, relevant to surgery when there is concern for causing a fire. The flow rates that are delivered at various flow rates and circuit pressures have not been previously studied. ⋯ When using a nasal cannula adapted to the Y-piece of the anesthesia circuit, the delivery system is linearly dependent on the pressure in the circuit and uninfluenced by the flow rate set on the anesthesia machine. However, only modest flow rates (≤ 3.5 L/min) and a limited increase in the inspired FiO2 are possible when using this delivery method. When using a face mask and the anesthesia circuit, flow rates close to the set flow rate are possible with the APL valve fully closed. Patients scheduled for sedation for head and neck procedures with increased fire risk who require more than a marginal increase in the FiO2 to maintain an acceptable pulse oximetry saturation may need general anesthesia with tracheal intubation.