Molecular neurobiology
-
Molecular neurobiology · Sep 2016
ReviewStreptozotocin Intracerebroventricular-Induced Neurotoxicity and Brain Insulin Resistance: a Therapeutic Intervention for Treatment of Sporadic Alzheimer's Disease (sAD)-Like Pathology.
Alzheimer's disease (AD) is a neurodegenerative disorder that is remarkably characterized by pathological hallmarks which include amyloid plaques, neurofibrillary tangles, neuronal loss, and progressive cognitive loss. Several well-known genetic mutations which are being used for the development of a transgenic model of AD lead to an early onset familial AD (fAD)-like condition. However, these settings are only reasons for a small percentage of the total AD cases. ⋯ Streptozotocin (STZ) produces similar characteristic pathology of sAD such as altered glucose metabolism, insulin signaling, synaptic dysfunction, protein kinases such as protein kinase B/C, glycogen synthase-3β (GSK-3β) activation, tau hyperphosphorylation, Aβ deposition, and neuronal apoptosis. Further, STZ also leads to inhibition of Akt/PKB, insulin receptor (IR) signaling molecule, and insulin resistance in brain. These alterations mediated by STZ can be used to explore the underlying molecular and pathophysiological mechanism of AD (especially sAD) and their therapeutic intervention for drug development against AD pathology.
-
Molecular neurobiology · Sep 2016
ReviewDissecting the Role of Anti-ganglioside Antibodies in Guillain-Barré Syndrome: an Animal Model Approach.
Guillain-Barré syndrome (GBS) is an autoimmune polyneuropathy disease affecting the peripheral nervous system (PNS). Most of the GBS patients experienced neurological symptoms such as paresthesia, weakness, pain, and areflexia. There are also combinations of non-neurological symptoms which include upper respiratory tract infection and diarrhea. ⋯ The activation of RhoA signaling pathways is also involved in neurite outgrowth inhibition. However, the link between these two molecular events remains unresolved and requires further investigation. Development of anti-ganglioside antagonists can serve as targeted therapy for the treatment of GBS and will open a new approach of drug development with maximum efficacy and specificity.
-
Molecular neurobiology · Aug 2016
ReviewThe Role of Nitric Oxide and Sympathetic Control in Cerebral Autoregulation in the Setting of Subarachnoid Hemorrhage and Traumatic Brain Injury.
Cerebral autoregulation is defined as the mechanism by which constant cerebral blood flow is maintained despite changes of arterial blood pressure, and arterial blood pressure represents the principle aspect of cerebral autoregulation. The impairment of cerebral autoregulation is reported to be involved in several diseases. However, the concept, mechanisms, and pathological dysfunction of cerebral autoregulation are beyond full comprehension. ⋯ Additionally, impaired cerebral autoregulation following subarachnoid hemorrhage and traumatic brain injury has been proven by several descriptive studies, although without corresponding explanations. As the most important mechanisms of cerebral autoregulation, the changes of nitric oxide and sympathetic stimulation play significant roles in these insults. Therefore, the in-depth researches of nitric oxide and sympathetic nerve in cerebral autoregulation may help to develop new therapeutic targets.
-
Molecular neurobiology · May 2016
Meta AnalysisHyperglycemia and Mortality Risk in Patients with Primary Intracerebral Hemorrhage: A Meta-Analysis.
Hyperglycemia may be associated with worse functional outcomes in patients with primary intracerebral hemorrhage. We performed a systematic review and meta-analysis to investigate the relationship between hyperglycemia and mortality risk in patients with primary intracerebral hemorrhage. We searched PubMed and Embase databases for studies investigating the association between hyperglycemia and mortality risk in patients with primary intracerebral hemorrhage. ⋯ Subgroup analysis by time of follow-up showed that hyperglycemia significantly increased risk of short-term mortality (RR = 3.97, 95% CI 2.13-7.43) and long-term mortality (RR = 1.53, 95% CI 1.14-2.05). The RR of mortality for per 1-mmol/L increment in glucose level was 1.14 (95% CI 1.06-1.22). In patients with primary intracerebral hemorrhage, hyperglycemia significantly increases risk of both short-term mortality and long-term mortality.
-
Molecular neurobiology · Jan 2016
ReviewCrosstalk Between Endoplasmic Reticulum Stress, Oxidative Stress, and Autophagy: Potential Therapeutic Targets for Acute CNS Injuries.
Endoplasmic reticulum (ER) stress induces a variety of neuronal cell death pathways that play a critical role in the pathophysiology of stroke. ER stress occurs when unfolded/misfolded proteins accumulate and the folding capacity of ER chaperones exceeds the capacity of ER lumen to facilitate their disposal. As a consequence, a complex set of signaling pathways will be induced that transmit from ER to cytosol and nucleus to compensate damage and to restore the normal cellular homeostasis, collectively known as unfolded protein response (UPR). ⋯ While ER stress responses have been well studied after stroke, there is an emerging need to study the association of ER stress with other cell pathways that exacerbate neuronal death after an injury. In this review, we summarize the current understanding of the role for ER stress in acute brain injuries, highlighting the diverse molecular mechanisms associated with ER stress and its relation to oxidative stress and autophagy. We also discussed the existing and developing therapeutic options aimed to reduce ER stress to protect the CNS after acute injuries.