Pediatric radiology
-
Pediatric radiology · Jun 2016
Free-breathing motion-corrected late-gadolinium-enhancement imaging improves image quality in children.
The value of late-gadolinium-enhancement (LGE) imaging in the diagnosis and management of pediatric and congenital heart disease is clear; however current acquisition techniques are susceptible to error and artifacts when performed in children because of children's higher heart rates, higher prevalence of sinus arrhythmia, and inability to breath-hold. Commonly used techniques in pediatric LGE imaging include breath-held segmented FLASH (segFLASH) and steady-state free precession-based (segSSFP) imaging. More recently, single-shot SSFP techniques with respiratory motion-corrected averaging have emerged. ⋯ Single-shot late-enhancement imaging with motion-corrected averaging is feasible in children, robust at high heart rates and with variable R-R intervals, and can be performed without breath-holding with higher image quality ratings than standard breath-held techniques. Use of free-breathing single-shot motion-corrected technique does not compromise LGE image quality in children who can hold their breath, and it can significantly improve image quality in children who cannot hold their breath or who have significant arrhythmia.
-
Vascular pathology is ubiquitous in children. Common indications for angiographic imaging in the body include congenital anomalies, portal hypertension, assessing resectability of neoplasms, renovascular hypertension, vascular malformations, vasculitis, systemic vein thrombosis, and trauma. ⋯ This article focuses on the principles of contrast-enhanced MR angiography of the body as it pertains to the physiologies and pathologies encountered in children. It also discusses tools to adapt the MR angiographic technique to the clinical indication, as well as pitfalls of post-processing and interpretation in commonly encountered vascular imaging scenarios in the pediatric body.
-
Pediatric radiology · May 2016
ReviewStrategies to minimize sedation in pediatric body magnetic resonance imaging.
The high soft-tissue contrast of MRI and the absence of ionizing radiation make it a valuable tool for assessment of body pathology in children. Infants and young children are often unable to cooperate with awake MRI so sedation or general anesthesia might be required. However, given recent data on the costs and potential risks of anesthesia in young children, there is a need to try to decrease or avoid sedation in this population when possible. ⋯ Breath-holding, respiratory triggering and signal averaging all reduce respiratory motion. Emerging techniques such as radial and multislice k-space acquisition, navigator motion correction, as well as parallel imaging and compressed sensing reconstruction methods can further accelerate acquisition and decrease motion. Collaboration among radiologists, anesthesiologists, technologists, child life specialists and families is crucial for successful performance of MRI in young children.
-
Trauma is the most common cause of death in childhood, and abusive head trauma is the most common cause of traumatic death and morbidity in infants younger than 1 year. The main differential diagnosis of abusive head trauma is accidental traumatic brain injury, which is usually witnessed. This paper also discusses more uncommon diagnoses such as congenital and acquired disorders of hemostasis, cerebral arteriovenous malformations and metabolic diseases, all of which are extremely rare. Diagnostic imaging including CT and MRI is very important for the distinction of non-accidental from accidental traumatic injury.
-
Pediatric radiology · Apr 2016
Development of a screening MRI for infants at risk for abusive head trauma.
Abusive head trauma (AHT) is an important cause of morbidity in infants. Identifying which well-appearing infants are at risk for AHT and need neuroimaging is challenging, and concern about radiation exposure limits the use of head CT. Availability of an MRI protocol that is highly sensitive for intracranial hemorrhage would allow for AHT screening of well-appearing infants without exposing them to radiation. ⋯ A screening MRI protocol including axial T2, axial GRE and coronal T1-W inversion recovery sequences is highly sensitive for intracranial hemorrhage and may be useful as a screening tool to differentiate well-appearing infants at risk for AHT who should undergo head CT from those who can safely be discharged without head CT. Additional research is needed to evaluate the feasibility of this approach in clinical practice.