Journal of internal medicine
-
Phenylacetylglutamine (PAGln)-a newly discovered microbial metabolite produced by phenylalanine metabolism-is reportedly associated with cardiovascular events via adrenergic receptors. Nonetheless, its association with cardiovascular outcomes in heart failure (HF) patients remains unknown. ⋯ Plasma PAGln levels are an independent predictor of an increased risk of adverse cardiovascular events in HF. Our work could provide joint and complementary prognostic value to NT-proBNP levels in HF patients.
-
Amiodarone is an effective antiarrhythmic drug, which interferes with cholesterol synthesis. In the human body, it inhibits two enzymes in the cholesterol-synthesis pathway, followed by increases especially in serum desmosterol and zymostenol concentrations and a decrease in that of serum lathosterol. ⋯ Amiodarone treatment caused the accumulation of desmosterol and zymostenol in myocardium. In particular, myocardial desmosterol concentrations were substantially elevated, which may play a part in some of the therapeutic and adverse effects of amiodarone treatment.
-
Complex diseases are caused by a combination of genetic, lifestyle, and environmental factors and comprise common noncommunicable diseases, including allergies, cardiovascular disease, and psychiatric and metabolic disorders. More than 25% of Europeans suffer from a complex disease, and together these diseases account for 70% of all deaths. The use of genomic, molecular, or imaging data to develop accurate diagnostic tools for treatment recommendations and preventive strategies, and for disease prognosis and prediction, is an important step toward precision medicine. ⋯ However, for most complex diseases-including psychiatric disorders and allergies-available polygenic risk scores are more probabilistic than deterministic and have not yet been validated for clinical utility. However, subclassifying patients of a specific disease into discrete homogenous subtypes based on molecular or phenotypic data is a promising strategy for improving diagnosis, prediction, treatment, prevention, and prognosis. The availability of high-throughput molecular technologies, together with large collections of health data and novel data-driven approaches, offers promise toward improved individual health through precision medicine.