Journal of internal medicine
-
Multiple sclerosis (MS), a chronic inflammatory demyelinating and neurodegenerative disease of the central nervous system, is today a leading cause of unpredictable lifelong disability in young adults. The treatment of patients in progressive stages remains highly challenging, alluding to our limited understanding of the underlying pathological processes. In this review, we provide insights into the mechanisms underpinning MS progression from a perspective of epigenetics, that refers to stable and mitotically heritable, yet reversible, changes in the genome activity and gene expression. ⋯ Despite minor overlap at individual methylation sites, nearly 30% of altered genes reported in peripheral immune cells of progressive MS patients were found in brain tissue, jointly converging on alterations of neuronal functions. We further speculate about the mechanisms underlying shared epigenetic patterns between blood and brain, which likely imply the influence of internal (genetic control) and/or external (e.g. smoking and ageing) factors imprinting a common signature in both compartments. Overall, we propose that epigenetics might shed light on clinically relevant mechanisms involved in disease progression and open new avenues for the treatment of progressive MS patients in the future.
-
Abdominal aortic aneurysm (AAA) is a relatively common and potentially fatal disease. The management of AAA has undergone extensive changes in the last two decades. High quality vascular surgical registries were established early and have been found to be instrumental in the evaluation and monitoring of these changes, most notably the wide implementation of minimally invasive endovascular surgical technology. ⋯ By using large-scale data over longer periods of time, the importance of centralization of care to high-volume centres was shown, particularly for open repair. Additionally, large-scale databases can offer an opportunity to assess practice and outcomes in patient subgroups (e.g. treatment of AAA in women and the elderly) as well as in rare aortic pathologies. In this review article, we point out the most important paradigm shifts in AAA management based on vascular registry data.
-
Mitochondrial disease presenting in childhood is characterized by clinical, biochemical and genetic complexity. Some children are affected by canonical syndromes, but the majority have nonclassical multisystemic disease presentations involving virtually any organ in the body. Each child has a unique constellation of clinical features and disease trajectory, leading to enormous challenges in diagnosis and management of these heterogeneous disorders. ⋯ The review concludes with a brief discussion of currently available and emerging therapies. The field of mitochondrial medicine has made enormous strides in the last 30 years, with approaching 400 different genes across two genomes now linked to primary mitochondrial disease. However, many important questions remain unanswered, including the reasons for tissue specificity and variability of clinical presentation of individuals sharing identical gene defects, and a lack of disease-modifying therapies and biomarkers to monitor disease progression and/or response to treatment.
-
Mitochondrial diseases are extremely heterogeneous genetic conditions characterized by faulty oxidative phosphorylation (OXPHOS). OXPHOS deficiency can be the result of mutation in mtDNA genes, encoding either proteins (13 subunits of the mitochondrial complexes I, III, IV and V) or the tRNA and rRNA components of the in situ mtDNA translation. The remaining mitochondrial disease genes are in the nucleus, encoding proteins with a huge variety of functions, from structural subunits of the mitochondrial complexes, to factors involved in their formation and regulation, components of the mtDNA replication and expression machinery, biosynthetic enzymes for the biosynthesis or incorporation of prosthetic groups, components of the mitochondrial quality control and proteostasis, enzymes involved in the clearance of toxic compounds, factors involved in the formation of the lipid milieu, etc. ⋯ This is in contrast with 'tailored', personalized therapeutic approaches, such as gene therapy, cell therapy and organ replacement, that can be useful only for individual conditions. This review will present the most recent concepts emerged from preclinical work and the attempts to translate them into the clinics. The common notion that mitochondrial disorders have no cure is currently challenged by a massive effort of scientists and clinicians, and we do expect that thanks to this intensive investigation work and tangible results for the development of strategies amenable to the treatment of patients with these tremendously difficult conditions are not so far away.
-
The first draft human mitochondrial DNA (mtDNA) sequence was published in 1981, paving the way for two decades of discovery linking mtDNA variation with human disease. Severe pathogenic mutations cause sporadic and inherited rare disorders that often involve the nervous system. However, some mutations cause mild organ-specific phenotypes that have a reduced clinical penetrance, and polymorphic variation of mtDNA is associated with an altered risk of developing several late-onset common human diseases including Parkinson's disease. mtDNA mutations also accumulate during human life and are enriched in affected organs in a number of age-related diseases. ⋯ In addition, there is emerging evidence that selection can act for and against specific mtDNA variants within the developing germ line, and possibly within developing tissues. Thus, understanding how mtDNA is inherited has far-reaching implications across medicine. There is emerging evidence that this highly dynamic system is amenable to therapeutic manipulation, raising the possibility that we can harness new understanding to prevent and treat rare and common human diseases where mtDNA mutations play a key role.