Journal of internal medicine
-
Precision cancer medicine is a multidisciplinary team effort that requires involvement and commitment of many stakeholders including the society at large. Building on the success of significant advances in precision therapy for oncological patients over the last two decades, future developments will be significantly shaped by improvements in scalable molecular diagnostics in which increasingly complex multilayered datasets require transformation into clinically useful information guiding patient management at fast turnaround times. Adaptive profiling strategies involving tissue- and liquid-based testing that account for the immense plasticity of cancer during the patient's journey and also include early detection approaches are already finding their way into clinical routine and will become paramount. ⋯ Tight coordination with regulatory agencies and health technology assessment bodies is crucial in this context. Multicentric networks operating nationally and internationally are key in implementing precision oncology in clinical practice and support developing and improving the ecosystem and framework needed to turn invocation into benefits for patients. The review provides an overview of the diagnostic tools, innovative clinical studies, and collaborative efforts needed to realize precision cancer medicine.
-
Complex diseases are caused by a combination of genetic, lifestyle, and environmental factors and comprise common noncommunicable diseases, including allergies, cardiovascular disease, and psychiatric and metabolic disorders. More than 25% of Europeans suffer from a complex disease, and together these diseases account for 70% of all deaths. The use of genomic, molecular, or imaging data to develop accurate diagnostic tools for treatment recommendations and preventive strategies, and for disease prognosis and prediction, is an important step toward precision medicine. ⋯ However, for most complex diseases-including psychiatric disorders and allergies-available polygenic risk scores are more probabilistic than deterministic and have not yet been validated for clinical utility. However, subclassifying patients of a specific disease into discrete homogenous subtypes based on molecular or phenotypic data is a promising strategy for improving diagnosis, prediction, treatment, prevention, and prognosis. The availability of high-throughput molecular technologies, together with large collections of health data and novel data-driven approaches, offers promise toward improved individual health through precision medicine.
-
The technical development of high-throughput sequencing technologies and the parallel development of targeted therapies in the last decade have enabled a transition from traditional medicine to personalized treatment and care. In this way, by using comprehensive genomic testing, more effective treatments with fewer side effects are provided to each patient-that is, precision or personalized medicine (PM). In several European countries-such as in England, France, Denmark, and Spain-the governments have adopted national strategies and taken "top-down" decisions to invest in national infrastructure for PM. ⋯ In this review, we summarize key learnings at the European level on the implementation process to establish sustainable governance and organization for PM at the regional, national, and EU/international levels. We also discuss critical ethical and legal aspects of implementing PM, and the importance of access to real-world data and performing clinical trials for evidence generation, as well as the need for improved reimbursement models, increased cross-disciplinary education and patient involvement. In summary, PM represents a paradigm shift, and modernization of healthcare and all relevant stakeholders-that is, healthcare, academia, policymakers, industry, and patients-must be involved in this system transformation to create a sustainable, non-siloed ecosystem for precision healthcare that benefits our patients and society at large.
-
Genetic testing has been applied for decades in clinical routine diagnostics of hematological malignancies to improve disease (sub)classification, prognostication, patient management, and survival. In recent classifications of hematological malignancies, disease subtypes are defined by key recurrent genetic alterations detected by conventional methods (i.e., cytogenetics, fluorescence in situ hybridization, and targeted sequencing). Hematological malignancies were also one of the first disease areas in which targeted therapies were introduced, the prime example being BCR::ABL1 inhibitors, followed by an increasing number of targeted inhibitors hitting the Achilles' heel of each disease, resulting in a clear patient benefit. ⋯ We discuss the relevance and potential of monitoring measurable residual disease using ultra-sensitive techniques to assess therapy response and detect early relapses. Finally, we bring up the promising avenue of functional precision medicine, combining ex vivo drug screening with various omics technologies, to provide novel treatment options for patients with advanced disease. Although we are only in the beginning of the field of precision hematology, we foresee rapid development with new types of diagnostics and treatment strategies becoming available to the benefit of our patients.
-
Craniopharyngiomas (CPs) are rare primary brain epithelial tumors arising in the suprasellar region from remnants of Rathke's pouch. About 50% originate at the level of the third ventricle floor, including the hypothalamus (HT). CPs are characterized by a low proliferation rate and symptoms due to mass effect and local infiltration and are managed primarily with surgery and radiotherapy. ⋯ The group with HT damage suffers from cognitive dysfunction with attention deficits, impaired episodic memory, and processing speed. Diffusion tensor imaging has shown significant microstructural white matter alteration in several areas important for cognition. Recently, complete or partial tumor response was shown to targeted therapy, with BRAF and Mekinist inhibitors for PCPs with BRAF V600E mutation.