Proceedings of the Institution of Mechanical Engineers. Part H, Journal of engineering in medicine
-
Proc Inst Mech Eng H · Apr 2009
Minimal-resection arthroplasty to treat meniscal tears with associated condyle lesions: finite element analysis.
An early intervention prosthesis which minimizes the extent of resected healthy bone would be advantageous to patients for whom a total or unicompartmental replacement would sacrifice extensive healthy tissue. In this study the use of a device to treat osteoarthritis localized upon a single condyle of the femur with an associated irreparable meniscal tear is considered. The effects of implant alignment are considered from the standpoint of kinematics and potential for cartilage damage. ⋯ Natural knee kinematics are best reproduced by the medial condyle rather than the lateral condyle. Stress exposure of the cartilage increased with the introduction of the femoral condyle prosthesis, which may progress eventually to osteoarthritis, although the results indicate that the medial condyle device is less likely to lead to cartilage damage than is lateral condyle replacement. This study demonstrates that a minimal-resection femoral condyle device may provide sufficient knee joint function to serve as an interim treatment prior to total or unicompartmental knee arthroplasty.
-
Proc Inst Mech Eng H · Nov 2008
Blind adaptive filtering for non-invasive extraction of the fetal electrocardiogram and its non-stationarities.
The objective is to extract automatically a beat-to-beat fetal electrocardiogram (fECG) from a maternal electrocardiogram (mECG) using surface electrodes placed on the maternal abdomen and to derive fetal PR, QT, QTc, and QS durations to allow early diagnosis and monitoring treatment of certain fetal cardiac disorders. mECG and abdominal noise in abdominal maternal recordings can be orders of magnitude stronger than the fECG signal and the P and T waves that are embedded in them. A two-stage blind adaptive filtering algorithm was used for fECG extraction, the first stage using frequency-domain electrocardiogram features and the second considering time-domain features. ⋯ The combined filter allowed identification of diagnostically important PR, QT, and RR durations. Comparison with synthetic data is also included.
-
Various actions on the lumbar spine have been attributed to quadratus lumborum, but they have not been substantiated by quantitative data. The present study was undertaken to determine the magnitude of forces and moments that quadratus lumborum could exert on the lumbar spine. The fascicular anatomy of quadratus lumborum was studied in six embalmed cadavers. ⋯ The magnitudes of the compression forces exerted by quadratus lumborum on the lumbar spine, the extensor moment, and the lateral bending moment, were each no greater than 10 per cent of those exerted by erector spinae and multifidus. These data indicate that quadratus lumborum has no more than a modest action on the lumbar spine, in quantitative terms. Its actual role in spinal biomechanics has still to be determined.
-
Proc Inst Mech Eng H · Jan 2008
Reality-augmented virtual fluoroscopy for computer-assisted diaphyseal long bone fracture osteosynthesis: a novel technique and feasibility study results.
In this paper, a novel technique to create a reality-augmented virtual fluoroscopy for computer-assisted diaphyseal long bone fracture osteosynthesis and feasibility study results are presented. With this novel technique, repositioning of bone fragments during closed fracture reduction and osteosynthesis can lead to image updates in the virtual imaging planes of all acquired images without any radiation. The technique is achieved with a two-stage method. ⋯ One focuses on eliminating the user interactions with automated identifications and segmentations of bone fragments. The other focuses on providing non-photorealistic implant visualization. Further experiments are performed to validate the effectiveness of the proposed enhancements.
-
Proc Inst Mech Eng H · Jan 2008
Comparative StudyFinite element analysis of a subtrochanteric fractured femur with dynamic hip screw, dynamic condylar screw, and proximal femur nail implants--a comparative study.
Selection of the correct type of implant for fracture fixation has become a very interesting problem in the orthopaedic community. The present work studies the biomechanical behaviour of the femur with three different implant configurations for simple transverse subtrochanteric fracture and the intact femur using finite element analysis. The implants considered in this study are as follows: dynamic hip screw (DHS), dynamic condylar screw (DCS), and proximal femur nail (PFN). ⋯ The displacement and principal stress on the proximal femur have been compared for all the implant models. The stresses on the cortical screws for DCS and DHS implants have also been compared. The result shows that the DHS and DCS implants behave in a similar way to the intact femur compared with the PFN implant.