Journal of clinical pharmacology
-
X-linked hypophosphatemia (XLH) is an inherited metabolic bone disease with abnormally elevated serum FGF23 resulting in low renal maximum threshold for phosphate reabsorption, low serum phosphate (Pi) and 1,25-dihydroxyvitamin D levels with subsequent development of short stature and skeletal deformities. KRN23 is a novel human anti-FGF23 antibody for the treatment of XLH. The pharmacokinetics (PK) and pharmacodynamics (PD) models of KRN23 were assessed following subcutaneous dosing every 28 days over an initial 4-month dose escalation (0.05-0.6 mg/kg) and a subsequent 12-month titration period (0.1-1.0 mg/kg) in XLH adults. ⋯ A PK-PD model with a maximum effect (Emax ) and a time-varying effective concentration to reach 50% of Emax (EC50,t ) described data adequately. Typical Emax was 1.5 mg/dL. Typical EC50,t was 1780 ng/mL and 5999 ng/mL after first and last dose, respectively.
-
Clinical Trial
Pharmacokinetics of meropenem in children receiving continuous renal replacement therapy: Validation of clinical trial simulations.
Meropenem is frequently prescribed in critically ill children receiving continuous renal replacement therapy (CRRT). We previously used clinical trial simulations to evaluate dosing regimens of meropenem in this population and reported that a dose of 20 mg/kg every 12 hours optimizes target attainment. Meropenem pharmacokinetics were investigated in this prospective, open-label study to validate our previous in silico predictions. ⋯ Simulations demonstrated that a dose of 20 mg/kg every 12 hours resulted in a time above the minimum inhibitory concentration (%fT > MIC) of 100% in 5 out of 7 subjects, with a %fT > MIC of 93% and 43% in the remaining 2 subjects. We conclude that CRRT contributed significantly to the total clearance of meropenem. A dosing regimen of 20 mg/kg achieved good target attainment in critically ill children receiving CRRT, which is consistent with our previously published in silico predictions.
-
Randomized Controlled Trial
Pharmacokinetics of high-dose intravenous melatonin in humans.
This crossover study investigated the pharmacokinetics and adverse effects of high-dose intravenous melatonin. Volunteers participated in 3 identical study sessions, receiving an intravenous bolus of 10 mg melatonin, 100 mg melatonin, and placebo. Blood samples were collected at baseline and 0, 60, 120, 180, 240, 300, 360, and 420 minutes after the bolus. ⋯ Median (IQR) Cmax after the bolus injections of 10 mg and 100 mg of melatonin were 221,500.0 (185,637.5-326,175.0) pg/mL and 1,251,500.0 (864,375.0-1,770,500.0) pg/mL, respectively; mean (SD) t1/2 was 42.3 (5.6) minutes and 46.2 (6.2) minutes; mean (SD) Vd was 1.6 (0.9) L/kg and 2.0 (0.8) L/kg; mean (SD) CL was 0.0253 (0.0096) L/min · kg and 0.0300 (0.0120) L/min · kg; and median (IQR) AUC0- ∞ , 8,997,633.0 (6,071,696.2-11,602,811.9) pg · min/mL and 54,685,979.4 (36,028,638.6-105,779,612.0) pg · min/mL. High-dose intravenous melatonin did not induce sedation, evaluated as simple reaction times. No adverse effects were reported in the study.
-
In X-linked hypophosphatemia (XLH), serum fibroblast growth factor 23 (FGF23) is increased and results in reduced renal maximum threshold for phosphate reabsorption (TmP), reduced serum inorganic phosphorus (Pi), and inappropriately low normal serum 1,25 dihydroxyvitamin D (1,25[OH]2 D) concentration, with subsequent development of rickets or osteomalacia. KRN23 is a recombinant human IgG1 monoclonal antibody that binds to FGF23 and blocks its activity. Up to 4 doses of KRN23 were administered subcutaneously every 28 days to 28 adults with XLH. ⋯ The mean intersubject variability in AUCn ranged from 30% to 37%. The area under the effect concentration-time curve (AUECn ) for change from baseline in TmP per glomerular filtration rate, serum Pi, 1,25(OH)2 D, and bone markers for each dosing interval increased linearly with increases in KRN23 AUCn. Linear correlation between serum KRN23 concentrations and increase in serum Pi support KRN23 dose adjustments based on predose serum Pi concentration.
-
Methylnaltrexone (MNTX) is approved for subcutaneous treatment (MNTX-SC) of opioid induced constipation. MNTX in oral immediate-release (MNTX-IR) and extended-release (MNTX-ER) dosage forms may antagonize the opioid induced delay in oro-cecal transit time (OCT) as measured by using radiolabeled lactulose. Because lactulose acts laxative by its own and efficacy of MNTX on colon transit time (CTT) was unknown, the opioid antagonistic effects MNTX-IR and MNTX-ER (both 500 mg) relative to MNTX-SC (12 mg) were evaluated in 15 healthy subjects with loperamide (LOP, 3 × 4 mg, 12 hourly) induced experimental constipation using the sulfasalazine/sulfapyridine method and radio-opaque markers to measure OCT and whole gut transit time (WGT). ⋯ Compared to MNTX-SC, bioavailability of MNTX-IR and MNTX-ER was 1.53-5.49% and 0.11-1.24%, respectively. MNTX-SC and MNTX-IR achieved active serum levels only for ∼ 3-5 h. MNTX-ER antagonized the opioid-induced delay of CTT most likely by local effects on µ-opioid receptors in the colon.