American journal of respiratory cell and molecular biology
-
Am. J. Respir. Cell Mol. Biol. · Oct 2011
Impact of endogenous protein C on pulmonary coagulation and injury during lethal H1N1 influenza in mice.
Influenza accounts for 5-10% of community-acquired pneumonia cases, and is a major cause of mortality. Sterile and bacterial lung injury are associated with procoagulant and inflammatory derangements in the lungs and down-regulation of the protein C (PC) pathway has been correlated with disease severity and mortality in severe bacterial pneumonia and sepsis. In addition, during lethal influenza pneumonia, pulmonary and systemic coagulation are activated, which can be attenuated by the administration of recombinant activated (A) PC. ⋯ Anti-PC antibody treatment aggravated pulmonary activation of coagulation as compared with control antibody treatment, as reflected by increased lung concentrations of thrombin-antithrombin complexes and fibrin degradation products, as well as intravascular thrombus formation. Anti-PC antibody treatment aggravated lung histopathology, but lowered bronchoalveolar neutrophil influx and total protein levels, and delayed mortality. In conclusion, endogenous PC has strong effects on the host response to lethal influenza A infection, inhibiting pulmonary coagulopathy and inflammation on the one hand, but facilitating neutrophil influx and protein leak and accelerating mortality on the other hand.
-
Am. J. Respir. Cell Mol. Biol. · Oct 2011
Tyrosine kinase inhibitors are potent acute pulmonary vasodilators in rats.
Tyrosine kinase inhibitors are promising for the treatment of severe pulmonary hypertension. Their therapeutic effects are postulated to be due to inhibition of cell growth-related kinases and attenuation of vascular remodeling. Their potential vasodilatory activities have not been explored. ⋯ Acute intravenous administration of imatinib reduced high right ventricular systolic pressure in pulmonary hypertensive rats, with little effect on left ventricular systolic pressure and cardiac output. We conclude that tyrosine kinase inhibitors have potent pulmonary vasodilatory activity, which could contribute to their long-term beneficial effect against pulmonary hypertension. Vascular smooth muscle relaxation mediated via activation of myosin light chain phosphatase (Ca(2+) desensitization) appears to play a role in the imatinib-induced pulmonary vasodilation.