American journal of respiratory cell and molecular biology
-
Am. J. Respir. Cell Mol. Biol. · May 2015
Randomized Controlled TrialCigarette smoke-induced damage-associated molecular pattern release from necrotic neutrophils triggers proinflammatory mediator release.
Cigarette smoking, the major causative factor for the development of chronic obstructive pulmonary disease, is associated with neutrophilic airway inflammation. Cigarette smoke (CS) exposure can induce a switch from apoptotic to necrotic cell death in airway epithelium. Therefore, we hypothesized that CS promotes neutrophil necrosis with subsequent release of damage-associated molecular patterns (DAMPs), including high mobility group box 1 (HMGB1), alarming the innate immune system. ⋯ In vitro, CS induced necrotic neutrophil cell death, as indicated by mitochondrial dysfunction, inhibition of apoptosis, and DAMP release. Supernatants from CS-treated neutrophils significantly increased the release of CXCL8 in normal human bronchial epithelial cells. Together, these observations show, for the first time, that CS exposure induces neutrophil necrosis, leading to DAMP release, which may amplify CS-induced airway inflammation by promoting airway epithelial proinflammatory responses.
-
Pulmonary arterial hypertension (PAH) is a devastating disease without effective treatment. Despite decades of research and the development of novel treatments, PAH remains a fatal disease, suggesting an urgent need for better understanding of the pathogenesis of PAH. ⋯ We have reviewed the current knowledge about miRNA biogenesis, miRNA expression pattern, and their roles in regulation of pulmonary artery smooth muscle cells, endothelial cells, and fibroblasts. We have also identified emerging trends in our understanding of the role of miRNAs in the pathogenesis of PAH and propose future studies that might lead to novel therapeutic strategies for the treatment of PAH.
-
Am. J. Respir. Cell Mol. Biol. · Feb 2015
Alveolar derecruitment and collapse induration as crucial mechanisms in lung injury and fibrosis.
Idiopathic pulmonary fibrosis (IPF) and bleomycin-induced pulmonary fibrosis are associated with surfactant system dysfunction, alveolar collapse (derecruitment), and collapse induration (irreversible collapse). These events play undefined roles in the loss of lung function. The purpose of this study was to quantify how surfactant inactivation, alveolar collapse, and collapse induration lead to degradation of lung function. ⋯ Surfactant inactivation leading to alveolar collapse and subsequent collapse induration might be the primary pathway for the loss of alveoli in this animal model. Loss of alveoli is highly correlated with the degradation of lung function. Our ultrastructural observations suggest that collapse induration is important in human IPF.
-
Am. J. Respir. Cell Mol. Biol. · Feb 2015
Pathologic mechanical stress and endotoxin exposure increases lung endothelial microparticle shedding.
Acute lung injury (ALI) results from infectious challenges and from pathologic lung distention produced by excessive tidal volume delivered during mechanical ventilation (ventilator-induced lung injury [VILI]) and is characterized by extensive alveolar and vascular dysfunction. Identification of novel ALI therapies is hampered by the lack of effective ALI/VILI biomarkers. We explored endothelial cell (EC)-derived microparticles (EMPs) (0.1-1 μm) as potentially important markers and potential mediators of lung vascular injury in preclinical models of ALI and VILI. ⋯ VILI-challenged mice (40 ml/kg, 4 h) exhibited increased plasma and bronchoalveolar lavage CD62E (E-selectin)-positive MPs compared with control mice. Finally, mice receiving intratracheal instillation of 18% CS-derived EMPs displayed significant lung inflammation and injury. These findings indicate that ALI/VILI-producing stimuli induce significant shedding of distinct EMP populations that may serve as potential ALI biomarkers and contribute to the severity of lung injury.
-
Am. J. Respir. Cell Mol. Biol. · Jan 2015
Platelet-rich plasma extract prevents pulmonary edema through angiopoietin-Tie2 signaling.
Increased vascular permeability contributes to life-threatening pathological conditions, such as acute respiratory distress syndrome. Current treatments for sepsis-induced pulmonary edema rely on low-tidal volume mechanical ventilation, fluid management, and pharmacological use of a single angiogenic or chemical factor with antipermeability activity. However, it is becoming clear that a combination of multiple angiogenic/chemical factors rather than a single factor is required for maintaining stable and functional blood vessels. ⋯ Systemic injection of PRP extract also increases Tie2 phosphorylation in mouse lung and prevents endotoxin-induced pulmonary edema and the consequent decreases in lung compliance and exercise intolerance resulting from endotoxin challenge. Soluble Tie2 receptor, which inhibits Ang-Tie2 signaling, suppresses the ability of PRP extract to inhibit pulmonary edema in mouse lung. These results suggest that PRP extract prevents endotoxin-induced pulmonary edema mainly through Ang-Tie2 signaling, and PRP extract could be a potential therapeutic strategy for sepsis-induced pulmonary edema and various lung diseases caused by abnormal vascular permeability.