American journal of respiratory cell and molecular biology
-
Am. J. Respir. Cell Mol. Biol. · Feb 2013
Ca(2+)-activated K(+) channel-3.1 blocker TRAM-34 attenuates airway remodeling and eosinophilia in a murine asthma model.
Key features of asthma include bronchial hyperresponsiveness (BHR), eosinophilic airway inflammation, and bronchial remodeling, characterized by subepithelial collagen deposition, airway fibrosis, and increased bronchial smooth muscle (BSM) mass. The calcium-activated K(+) channel K(Ca)3.1 is expressed by many cells implicated in the pathogenesis of asthma, and is involved in both inflammatory and remodeling responses in a number of tissues. The specific K(Ca)3.1 blocker 5-[(2-chlorophenyl)(diphenyl)methyl]-1H-pyrazole (TRAM-34) attenuates BSM cell proliferation, and both mast cell and fibrocyte recruitment in vitro. ⋯ We demonstrated that curative treatment with TRAM-34 abolishes BSM remodeling and subbasement collagen deposition, and attenuates airway eosinophilia. Although curative treatment alone did not significantly reduce BHR, the combined treatment attenuated nonspecific BHR to methacholine. This study indicates that K(Ca)3.1 blockade could provide a new therapeutic strategy in asthma.
-
Am. J. Respir. Cell Mol. Biol. · Jan 2013
Regulatory T cells reduce acute lung injury fibroproliferation by decreasing fibrocyte recruitment.
Acute lung injury (ALI) causes significant morbidity and mortality. Fibroproliferation in ALI results in worse outcomes, but the mechanisms governing fibroproliferation remain poorly understood. Regulatory T cells (Tregs) are important in lung injury resolution. ⋯ Blockade of the CXCL12-CXCR4 axis with AMD3100 also decreased lung fibrocytes and fibroproliferation. These results indicate a central role for Tregs in the resolution of ALI fibroproliferation by reducing fibrocyte recruitment along the CXCL12-CXCR4 axis. A dissection of the role of Tregs in ALI fibroproliferation may inform the design of new therapeutic tools for patients with ALI.
-
Am. J. Respir. Cell Mol. Biol. · Jan 2013
Tissue factor signals airway epithelial basal cell survival via coagulation and protease-activated receptor isoforms 1 and 2.
Tissue factor (TF) initiates the extrinsic coagulation cascade and is a high-affinity receptor for coagulation factor VII. TF also participates in protease-activated receptor (PAR)1 and PAR2 activation. Human epithelial basal cells were previously purified on the basis of TF expression. ⋯ This was due to two parallel but interdependent TF-regulated processes: failure to generate a basal cell-associated fibrin network and suboptimal PAR1 and PAR2 activity. The data indicate that membrane surface TF mediates airway epithelial basal cell attachment, which maintains cell survival and mitotic potential. The implications of these findings are discussed in the context of basal cell-associated TF activity in normal and injured tissues and of the potential for repair of airway epithelium in lung disease.
-
Am. J. Respir. Cell Mol. Biol. · Jan 2013
ReviewRegulation and functional significance of autophagy in respiratory cell biology and disease.
Autophagy is a homeostatic process common to all eukaryotic cells that serves to degrade intracellular components. Among three classes of autophagy, macroautophagy is best understood, and is the subject of this Review. ⋯ This process has been extensively studied in yeast, and understanding of its functional significance in human disease is also increasing. This Review explores the basic machinery and regulation of autophagy in mammalian systems, methods employed to measure autophagic activity, and then focuses on recent discoveries about the functional significance of autophagy in respiratory diseases, including chronic obstructive pulmonary disease, cystic fibrosis, tuberculosis, idiopathic pulmonary fibrosis, pulmonary arterial hypertension, acute lung injury, and lymphangioleiomyomatosis.
-
Am. J. Respir. Cell Mol. Biol. · Dec 2012
Increased surfactant protein D fails to improve bacterial clearance and inflammation in serpinB1-/- mice.
Previously, we described the protective role of the neutrophil serine protease inhibitor serpinB1 in preventing early mortality of Pseudomonas aeruginosa lung infection by fostering bacterial clearance and limiting inflammatory cytokines and proteolytic damage. Surfactant protein D (SP-D), which maintains the antiinflammatory pulmonary environment and mediates bacterial removal, was degraded in infected serpinB1-deficient mice. Based on the hypothesis that increased SP-D would rescue or mitigate the pathological effects of serpinB1 deletion, we generated two serpinB1(-/-) lines overexpressing lung-specific rat SP-D and inoculated the mice with P. aeruginosa. ⋯ SP-D of infected wild-type mice was intact in 43-kD monomers by reducing SDS-PAGE. By contrast, proteolytic fragments of 35, 17, and 8 kD were found in infected SP-D(low)serpinB1(-/-), SP-D(high) serpinB1(-/-) mice, and serpinB1(-/-) mice. Thus, although therapies to increase lung concentration of SP-D may have beneficial applications, the findings suggest that therapy with SP-D may not be beneficial for lung inflammation or infection if the underlying clinical condition includes excess proteolysis.