American journal of respiratory cell and molecular biology
-
Am. J. Respir. Cell Mol. Biol. · Sep 2012
The role of cyclooxygenase-2 in mechanical ventilation-induced lung injury.
Mechanical ventilation is necessary for patients with acute respiratory failure, but can cause or propagate lung injury. We previously identified cyclooxygenase-2 as a candidate gene in mechanical ventilation-induced lung injury. Our objective was to determine the role of cyclooxygenase-2 in mechanical ventilation-induced lung injury and the effects of cyclooxygenase-2 inhibition on lung inflammation and barrier disruption. ⋯ The immunohistochemical analysis of lung sections localized cyclooxygenase-2 expression to monocytes and macrophages in the alveoli. The pharmacologic inhibition of cyclooxygenase-2 with CAY10404 significantly decreased cyclooxygenase activity and attenuated lung injury in mice ventilated at high tidal volume, attenuating barrier disruption, tissue inflammation, and inflammatory cell signaling. This study demonstrates the induction of cyclooxygenase-2 by mechanical ventilation, and suggests that the therapeutic inhibition of cyclooxygenase-2 may attenuate ventilator-induced acute lung injury.
-
Am. J. Respir. Cell Mol. Biol. · Aug 2012
Inositol-trisphosphate reduces alveolar apoptosis and pulmonary edema in neonatal lung injury.
D-myo-inositol-1,2,6-trisphosphate (IP3) is an isomer of the naturally occurring second messenger D-myo-inositol-1,4,5-trisphosphate, and exerts anti-inflammatory and antiedematous effects in the lung. Myo-inositol (Inos) is a component of IP3, and is thought to play an important role in the prevention of neonatal pulmonary diseases such as bronchopulmonary dysplasia and neonatal acute lung injury (nALI). Inflammatory lung diseases are characterized by augmented acid sphingomyelinase (aSMase) activity leading to ceramide production, a pathway that promotes increased vascular permeability, apoptosis, and surfactant alterations. ⋯ Clinically, oxygenation and ventilation improved, and extravascular lung water decreased significantly with the S + IP3 intervention. In pulmonary tissue, we observed decreased aSMase activity and ceramide concentrations, decreased caspase-8 concentrations, reduced alveolar epithelial apoptosis, the reduced expression of interleukin-6, transforming growth factor-β1, and amphiregulin (an epithelial growth factor), reduced migration of blood-borne cells and particularly of CD14(+)/18(+) cells (macrophages) into the airspaces, and lower surfactant surface tensions in S + IP3-treated but not in S + Inos-treated piglets. We conclude that the admixture of IP3 to surfactant, but not of Inos, improves gas exchange and edema in our nALI model by the suppression of the governing enzyme aSMase, and that this treatment deserves clinical evaluation.
-
Am. J. Respir. Cell Mol. Biol. · Aug 2012
Apolipoprotein A-I attenuates ovalbumin-induced neutrophilic airway inflammation via a granulocyte colony-stimulating factor-dependent mechanism.
Apolipoprotein A-I (apoA-I) is a key component of high-density lipoproteins that mediates reverse cholesterol transport from cells and reduces vascular inflammation. We investigated whether endogenous apoA-I modulates ovalbumin (OVA)-induced airway inflammation in mice. We found that apoA-I expression was significantly reduced in the lungs of OVA-challenged, compared with saline-challenged, wild-type (WT) mice. ⋯ This was confirmed by the intranasal administration of a neutralizing anti-G-CSF antibody, which significantly reduced BALF neutrophilia by 72% in OVA-challenged apoA-I(-/-) mice, compared with mice that received a control antibody. We conclude that endogenous apoA-I negatively regulates OVA-induced neutrophilic airway inflammation, primarily via a G-CSF-dependent mechanism. Furthermore, these findings suggest that apoA-I may play an important role in modulating the severity of neutrophilic airway inflammation in asthma.
-
Am. J. Respir. Cell Mol. Biol. · Jul 2012
Influence of DNA on the activities and inhibition of neutrophil serine proteases in cystic fibrosis sputum.
Uncontrolled proteolysis by neutrophil serine proteases (NSPs) in lung secretions is a hallmark of cystic fibrosis (CF). We have shown that the active neutrophil elastase, protease 3, and cathepsin G in CF sputum resist inhibition in part by exogenous protease inhibitors. This resistance may be due to their binding to neutrophil extracellular traps (NETs) secreted by the activated neutrophils in CF sputum and to genomic DNA released from senescent and dead neutrophils. ⋯ Neutrophils activated with a calcium ionophore did not secrete NETs but released huge amounts of active proteases whose activities were not modified by DNase. We conclude that NETs are reservoirs of active proteases that protect them from inhibition and maintain them in a rapidly mobilizable status. Combining the effects of protease inhibitors with that of DNA-degrading agents could counter the deleterious proteolytic effects of NSPs in CF lung secretions.
-
Am. J. Respir. Cell Mol. Biol. · Jun 2012
Immune responses in cystic fibrosis: are they intrinsically defective?
Cystic fibrosis (CF), the most common lethal single-gene disorder affecting Northern Europeans and North Americans, is caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene. Cftr is a chloride channel and a regulator of other ion channels, and many aspects of the CF phenotype are directly related to ion channel abnormalities attributable to CFTR mutation. Lung disease is the most common limitation to the quantity and quality of life for patients with CF. ⋯ Defective CFTR function disrupts the balance of intracellular ion concentrations, including [Ca(2+)], which is known to drive gene expression pathways. New evidence links this hypothesis to anomalies in immune activation observed across CF cell types, which could shed light on the inability of individuals with CF to effectively clear pathogens. This review focuses on the emerging role of Cftr in gene expression and other functions in cells of the innate and adaptive immune system.