American journal of respiratory cell and molecular biology
-
Am. J. Respir. Cell Mol. Biol. · Sep 2018
ReviewThe Emerging Role of Neutrophils in Repair after Acute Lung Injury.
Neutrophils are key players in acute lung injury. Once recruited from the circulation, these cells release cytotoxic molecules that lead to tissue disruption, so their blockade has been advocated to prevent lung damage. ⋯ Neutrophils promote epithelial proliferation and are a source of proteases, which are required for the processing of the collagen scar and facilitation of cell migration. This article reviews the effects of neutrophils in repair after acute lung injury, focusing on their role as biovectors for proteases and other molecules involved in tissue remodeling.
-
Am. J. Respir. Cell Mol. Biol. · Sep 2018
Unraveling a Clinical Paradox: Why Does Bronchial Thermoplasty Work in Asthma?
Bronchial thermoplasty is a relatively new but seemingly effective treatment in subjects with asthma who do not respond to conventional therapy. Although the favored mechanism is ablation of the airway smooth muscle layer, because bronchial thermoplasty treats only a small number of central airways, there is ongoing debate regarding its precise method of action. Our aim in the present study was to elucidate the underlying method of action behind bronchial thermoplasty. ⋯ This mechanism accounted for progressively greater efficacy of thermoplasty with both severity of asthma and degree of muscle activation, broadly consistent with existing clinical findings. We report a probable mechanism of action for bronchial thermoplasty: alteration of lung-wide flow patterns in response to structural alteration of the treated central airways. This insight could lead to improved therapy via patient-specific, tailored versions of the treatment-as well as to implications for more conventional asthma therapies.
-
Am. J. Respir. Cell Mol. Biol. · Sep 2018
Epithelial Heparan Sulfate Contributes to Alveolar Barrier Function and Is Shed during Lung Injury.
The lung epithelial glycocalyx is a carbohydrate-enriched layer lining the pulmonary epithelial surface. Although epithelial glycocalyx visualization has been reported, its composition and function remain unknown. Using immunofluorescence and mass spectrometry, we identified heparan sulfate (HS) and chondroitin sulfate within the lung epithelial glycocalyx. ⋯ Although there was a trend toward decreased alveolar permeability after treatment with the matrix metalloproteinase inhibitor, doxycycline, this did not reach statistical significance. These studies suggest that epithelial HS contributes to the lung epithelial barrier and its degradation is sufficient to increase lung permeability. The partial reduction of HS shedding achieved with doxycycline is not sufficient to rescue epithelial barrier function during intratracheal LPS-induced lung injury; however, whether complete attenuation of HS shedding is sufficient to rescue epithelial barrier function remains unknown.
-
Am. J. Respir. Cell Mol. Biol. · Jul 2018
IFN-β Improves Sepsis-related Alveolar Macrophage Dysfunction and Postseptic Acute Respiratory Distress Syndrome-related Mortality.
IFN-β is reported to improve survival in patients with acute respiratory distress syndrome (ARDS), possibly by preventing sepsis-induced immunosuppression, but its therapeutic nature in ARDS pathogenesis is poorly understood. We investigated the therapeutic effects of IFN-β for postseptic ARDS to better understand its pathogenesis in mice. Postseptic ARDS was reproduced in mice by cecal ligation and puncture to induce sepsis, followed 4 days later by intratracheal instillation of Pseudomonas aeruginosa to cause pneumonia with or without subcutaneous administration of IFN-β 1 day earlier. ⋯ Compared with sepsis or pneumonia alone, pneumonia after sepsis was associated with blunted alveolar KC responses and reduced neutrophil recruitment into alveoli despite increased neutrophil burden in lungs (i.e., "incomplete alveolar neutrophil recruitment"), reduced bacterial clearance, increased lung injury, and markedly increased mortality. Importantly, IFN-β reversed the TNF-α/IL-10-mediated impairment of AM cytokine secretion in vitro, restored alveolar innate immune responsiveness in vivo, improved alveolar neutrophil recruitment and bacterial clearance, and consequently reduced the odds ratio for 7-day mortality by 85% (odds ratio, 0.15; 95% confidence interval, 0.03-0.82; P = 0.045). This mouse model of sequential sepsis → pneumonia infection revealed incomplete alveolar neutrophil recruitment as a novel pathogenic mechanism for postseptic ARDS, and systemic IFN-β improved survival by restoring the impaired function of AMs, mainly by recruiting neutrophils to alveoli.
-
Am. J. Respir. Cell Mol. Biol. · Jul 2018
ReviewAmicus or Adversary Revisited: Platelets in Acute Lung Injury and Acute Respiratory Distress Syndrome.
Platelets are essential cellular effectors of hemostasis and contribute to disease as circulating effectors of pathologic thrombosis. These are their most widely known biologic activities. ⋯ Studies in the last decade indicate unique interactions of platelets and their precursor, the megakaryocyte, in the lung and implicate platelets as essential effectors in experimental acute lung injury and clinical acute respiratory distress syndrome. Additional discoveries derived from evolving work will be required to precisely define the contributions of platelets to complex subphenotypes of acute lung injury and to determine if these remarkable and versatile blood cells are therapeutic targets in acute respiratory distress syndrome.