The European journal of neuroscience
-
Comparative Study
Increased expression of TRPV1 receptor in dorsal root ganglia by acid insult of the rat gastric mucosa.
It is still unknown which receptors of peripheral sensory pathways encode and integrate an acid-induced nociceptive event in the gastric mucosa. The transient receptor potential vanilloid receptor 1 (TRPV1) and the acid-sensing ion channel 3 (ASIC3) are two nociception-related receptors. Here we investigated (i) to what extent these receptors are distributed in stomach-innervating neurons of dorsal root and nodose ganglia, using immunohistochemistry and retrograde tracing, and (ii) whether their expression is altered in response to a noxious acid challenge of the stomach. ⋯ Combined vagotomy and ganglionectomy abolished expression of TRPV1, indicating that it may derive from an extrinsic source. In summary, noxious acid challenge of the stomach increased TRPV1 protein in spinal but not vagal or intrinsic sensory afferents. The TRPV1 receptor may be a key molecule in the transduction of acid-induced nociception of the gastric mucosa and a mediator of visceral hypersensitivity.
-
Orexin-A and -B (hypocretin-1 and -2) have been implicated in the stimulation of feeding. Here we show the effector neurons and signaling mechanisms for the orexigenic action of orexins in rats. Immunohistochemical methods showed that orexin axon terminals contact with neuropeptide Y (NPY)- and proopiomelanocortin (POMC)-positive neurons in the arcuate nucleus (ARC) of the rats. ⋯ These results demonstrate that orexins directly regulate NPY, POMC and glucose-responsive neurons in the ARC and VMH, in a manner reciprocal to leptin. Orexin-A evokes Ca(2+) signaling in NPY neurons via OX(1)R-PLC-PKC and IP(3) pathways. These neural pathways and intracellular signaling mechanisms may play key roles in the orexigenic action of orexins.
-
Our previous studies have demonstrated that neurokinin-1 receptor (NK1R)-immunoreactive (ir) neurons in the pre-Bötzinger Complex (pre-BötC), the hypothesized kernel of respiratory rhythmogenesis, receive both glutamatergic excitatory and GABAergic or glycinergic inhibitory inputs. Neuromodulators, such as substance P (SP) and opioids, play important roles in normal respiratory activity and respiratory disorders. The identification of the relationship between neurotransmitters and NK1R-ir neurons at the cellular level is essential for understanding the synaptic interaction within the pre-BötC network. ⋯ Most of them were asymmetric. Symmetric synapses made up 10% of all synapses examined between SP-ir boutons and NK1R-ir neurons, and 19% of ENK/NK1R synapses. Colocalization of SP and/or ENK with glutamate in boutons in the pre-BötC implies the combined synaptic release of excitatory amino acid and neuropeptides, which may exert combined post-synaptic effects onto NK1R-ir neurons and contribute to respiratory activity.
-
Synaptically released glutamate binds to ionotropic or metabotropic glutamate receptors. Metabotropic glutamate receptors (mGluRs) are G-protein-coupled receptors and can be divided into three subclasses (Group I-III) depending on their pharmacology and coupling to signal transduction cascades. Group I mGluRs are coupled to phospholipase C and are implicated in several important physiological processes, including activity-dependent synaptic plasticity, but their exact role in synaptic plasticity remains unclear. ⋯ These alterations in the induction of LTD and LTP resemble the metaplastic changes observed in previously depressed synapses. In addition, in the presence of DHPG additional potentiation could be induced after LTP had apparently been saturated. These findings provide strong evidence for an involvement of group I mGluRs in the regulation of metaplasticity in the CA1 field of the hippocampus.
-
The extracellular protease cascade of plasminogen activators and plasminogen are known to regulate neuronal plasticity and extracellular matrix modification, and to be important factors involved in producing long-term potentiation in the CNS. The purpose of this study is to examine the expression of plasminogen activators in primary afferents and its role in nociceptive pathways after peripheral nerve injury. We found the induction of mRNAs for tissue type plasminogen activator (tPA) and urokinase plasminogen activator (uPA) in the rat dorsal root ganglia following sciatic nerve transection. ⋯ Intrathecal injection of a specific inhibitor of tPA decreased electrical stimulation-induced Fos expression in dorsal horn neurons following axotomy, and also prevented the development of thermal hyperalgesia following partial sciatic nerve ligation. These findings suggest that the increased tPA in the dorsal horn due to mRNA expression in the dorsal root ganglia increases the dorsal horn excitability and has an important role in pain behaviour after peripheral nerve injury. The tPA-mediated hypersensitivity in dorsal horn neurons may be a novel molecular mechanism of neuropathic pain.