The European journal of neuroscience
-
Comparative Study
The role of the medial supramammillary nucleus in the control of hippocampal theta activity and behaviour in rats.
The medial supramammillary nucleus (mSUM) controls the frequency of hippocampal theta activity, completely in anaethsetized rats and partially in free-moving rats. mSUM could therefore influence hippocampal contributions to cognition and emotion. Using chemical lesions of mSUM in rats, we tested whether mSUM is involved in controlling several hippocampal-dependent functions: (i) defensive behaviour (open field, fear conditioning); (ii) behavioural inhibition (fixed interval schedule, differential reinforcement of low rates schedule); and (iii) spatial learning (water maze). ⋯ There was not always a parallel between changes in theta frequency and behaviour; behaviours changed despite unchanged theta in defensive tasks and learning changed little despite a lower frequency of theta in the water maze task. This suggests that mSUM function impacts on emotional behaviour more than cognition, and can modulate theta and behaviour independently.
-
In the adult rat olfactory bulb, neurons are continually generated from progenitors that reside in the lateral ventricle wall. This study investigates long-term survival and cell death of newly generated cells within the adult olfactory bulb. After injecting rats at 2 months of age with 5-bromodeoxyuridine (BrdU), the newly generated cells were quantified over a period of 19 months. ⋯ These newborn cells differentiate more slowly into periglomerular interneurons, with a delay of more than 1 month when compared to the granule cells. The newly generated periglomerular neurons, among them a significant fraction of dopaminergic cells, showed a similar decline in number compared to the granule cell layer and long-term survival for the remaining new neurons of up to 19 months. Rather than replacing old neurons, this data suggests that adult olfactory bulb neurogenesis utilizes the overproduction and turnover of young neurons, which is reminiscent of the cellular dynamics observed during brain development.
-
Several stimuli result in glial activation and induce nitric oxide (NO) production in microglial and astroglial cells. The bacterial endotoxin lipopolysaccharide (LPS) has been widely used to achieve glial activation in vitro, and several studies show that both microglial and, to a lesser extent, astroglial cell cultures produce NO after LPS treatment. However, NO production in endotoxin-treated astrocyte cultures is controversial. ⋯ Thus, contaminating microglial cells were responsible for NO production in the secondary astrocyte cultures. We then analysed the effect of astrocytes on NO production by microglial cells using microglial-astroglial cocultures, and we observed that this production was clearly enhanced in the presence of astroglial cells. Soluble factors released by astrocytes did not appear to be directly responsible for such an effect, whereas nonsoluble factors present in the cell membrane of LPS-treated astrocytes could account, at least in part, for this enhancement.
-
In morphine-dependent rats, low naloxone doses have been shown to induce conditioned place aversion, which reflects the negative motivational component of opiate withdrawal. In contrast, higher naloxone doses are able to induce a 'full' withdrawal syndrome, including overt somatic signs. The c-fos gene is commonly used as a marker of neuronal reactivity to map the neural substrates that are recruited by various stimuli. ⋯ Our mapping study revealed a dissociation between a set of brain structures (extended amygdala, lateral septal nucleus, basolateral amygdala and field CA1 of the hippocampus) which exhibited c-fos mRNA dose-dependent variations from the lowest naloxone doses, and many other structures (dopaminergic and noradrenergic nuclei, motor striatal areas, hypothalamic nuclei and periaqueductal grey) which were less sensitive and recruited only by the higher doses. In addition, we found opposite dose-dependent variations of c-fos gene expression within the central (increase) and the basolateral (decrease) amygdala after acute morphine withdrawal. Altogether, these results emphasize that limbic structures of the extended amygdala along with the lateral septal nucleus, the basolateral amygdala and CA1 could specifically mediate the negative motivational component of opiate withdrawal.
-
The object of the present study is to investigate the role of endogenous adrenergic innervation in regulating bi-directional synaptic plasticity in rat hippocampal CA1 synapses. The endogenous adrenergic system was eliminated by giving subcutaneous injection of 6-hydroxydopamine (6-OHDA) to rats immediately after birth, and the animals were killed for experiments at postnatal ages of 25-35 days. In hippocampal slices taken from 6-OHDA-treated animals, theta-burst stimulation at 100 Hz failed to induce long-term potentiation (LTP) at CA1 synapses. ⋯ In addition, application of the D1/D5 receptor agonist, dihydrexidine, also restored LTP in slices from 6-OHDA-treated animals. These results suggest that physiologically the recruitment of catecholamine innervation may be important for induction of LTP at hippocampal CA1 synapses during tetanic stimulation, while it may not be essential for LTD induction by prolonged 1 Hz stimulation. The released NE and dopamine exert their role in modulating synaptic plasticity via activation of beta-adrenergic and D1/D5 receptors, respectively, which in turn increase the levels of cytoplasm adenosine-3',5'-cyclic monophosphate and PKA.