The European journal of neuroscience
-
The time-dependent decline in the ability of motoneurons to regenerate their axons after axotomy is one of the principle contributing factors to poor functional recovery after peripheral nerve injury. A decline in neurotrophic support may be partially responsible for this effect. The up-regulation of BDNF after injury, both in denervated Schwann cells and in axotomized motoneurons, suggests its importance in motor axonal regeneration. ⋯ We report that low doses of BDNF (0.5-2 microg/day for 28 days) had no detectable effect on axonal regeneration after immediate nerve repair, but promoted axonal regeneration of motoneurons whose regenerative capacity was reduced by chronic axotomy 2 months prior to nerve resuture, completely reversing the negative effects of delayed nerve repair. In contrast, high doses of BDNF (12-20 microg/day for 28 days) significantly inhibited motor axonal regeneration, after both immediate nerve repair and nerve repair after chronic axotomy. The inhibitory actions of high dose BDNF could be reversed by functional blockade of p75 receptors, thus implicating these receptors as mediators of the inhibitory effects of high dose exogenous BDNF.
-
Disinhibition reliably induces regular synchronous bursting in networks of spinal interneurons in culture as well as in the intact spinal cord. We have combined extracellular multisite recording using multielectrode arrays with whole cell recordings to investigate the mechanisms involved in bursting in organotypic and dissociated cultures from the spinal cords of embryonic rats. Network bursts induced depolarization and spikes in single neurons, which were mediated by recurrent excitation through glutamatergic synaptic transmission. ⋯ No evidence for the involvement of synaptic depletion or receptor desensitization in bursting was found, because neither the rate nor the size of spontaneous excitatory postsynaptic currents were decreased following the bursts. Extracellular stimuli paced bursts at low frequencies, but failed to induce bursts when applied too soon after the last burst. Altogether these results suggest that bursting in spinal cultures is mainly based on intrinsic spiking in some neurons, recurrent excitation of the network and auto-regulation of neuronal excitability.
-
The neuropeptides orexin-A and orexin-B are produced in neurons of the lateral hypothalamic area and have been implicated to be involved in the regulation of food/water intake and sleep-wake control. The orexins act at two different G-protein-coupled orexin receptors (OX-R1 and OX-R2) that are derived from separate genes and expressed differentially throughout the central nervous system. In the present study, we have used a polyclonal antipeptide antiserum to analyse in detail the distribution of OX-R1-immunoreactive neurons in the rat hypothalamus. ⋯ In the lateral hypothalamic area, OX-R1 immunoreactivity was demonstrated in melanin-concentrating hormone (MCH)- and orexin-containing neurons. In the hypothalamic tuberomammillary nucleus, OX-R1-immunoreactivity was shown in many histamine-containing neurons. The results support the idea that orexins have important actions on hypothalamic neurons that control food intake and fluid balance, but also that orexins may regulate other neuroendocrine systems.
-
We aimed to study the neuronal coordination of lower and upper limb muscles. We therefore evaluated the effect of small leg displacements during gait on leg and arm muscle electromyographic (EMG) activity in walking humans. During walking on a split-belt treadmill (velocity 3.5 km/h), short accelerations or decelerations were randomly applied to the right belt during the mid or end stance phase. ⋯ The observations suggest the existence of a task-dependent, flexible neuronal coupling between lower and upper limb muscles. The stronger impact of leg flexors in this interlimb coordination indicates that the neuronal control of leg flexor and extensor muscles is differentially interconnected during locomotion. The results are compatible with the assumption that the proximal arm muscle responses are associated with the swinging of the arms during gait, as a residual function of quadrupedal locomotion.
-
The role of the pedunculopontine nucleus (PPN) in the pathophysiology of Parkinson's disease is still unclear. Using microrecordings, we investigated the changes occurring in PPN neurons after lesions of the substantia nigra compacta (SNc) and the role of the subthalamic nucleus (STN) in these changes. In normal rats the firing rate of PPN neurons was 10.6 +/- 1.4 spikes/s, the majority of neurons (91%) having a regular firing pattern, 6% irregular and 3% in bursts. ⋯ The firing pattern changed significantly: 69% of the cells discharged regularly, 26% irregularly and 5% in bursts. These findings demonstrate that PPN neurons are overactive and more irregular in the 6-hydroxydopamine-lesioned rats, suggesting the implication of this nucleus in the pathophysiology of parkinsonism. Moreover, the fact that STN lesions induced a reduction in the firing rate of the PPN in normal rats and a normalization of the firing rate in rats with 6-hydroxydopamine lesions suggests that this nucleus is under major control of the STN.