The European journal of neuroscience
-
A subpopulation of olivary pretectal nucleus (OPN) neurons discharges action potentials in an oscillatory manner, with a period of approximately two minutes. This 'infra-slow' oscillatory activity depends on synaptic excitation originating in the retina. Signals from rod-cone photoreceptors reach the OPN via the axons of either classic retinal ganglion cells or intrinsically photosensitive retinal ganglion cells (ipRGCs), which use melanopsin for photon capturing. ⋯ However, under mesopic conditions (moderate light), when melanopsin phototransmission is absent, blocking rod-cone signalling causes disturbances or even the disappearance of oscillations implying that classic photoreceptors are of greater importance under moderate light. Evidence is provided that all photoreceptors are required for the generation of oscillations in the OPN, although their roles in driving the rhythm are determined by the lighting conditions, consistent with their relative sensitivities. The results further suggest that maintained retinal activity is crucial to observe infra-slow oscillatory activity in the OPN.
-
General anaesthetic agents induce loss of consciousness coupled with suppression of movement, analgesia and amnesia. Although these diverse functions are mediated by neural structures located in wide-ranging parts of the neuraxis, anaesthesia can be induced rapidly and reversibly by bilateral microinjection of minute quantities of γ-aminobutyric acid (GABA)A -R agonists at a small, focal locus in the mesopontine tegmentum (MPTA). State switching under these circumstances is presumably executed by dedicated neural pathways and does not require widespread distribution of the anaesthetic agent itself, the classical assumption regarding anaesthetic induction. ⋯ This action, however, was not simply a consequence of suppressing spike activity in MPTA neurons, as unilateral (or bilateral) microinjection of the local anaesthetic lidocaine at the same locus failed to induce anaesthesia. A model of the state-switching circuitry that accounts for the bilateral action of unilateral microinjection and also for the observation that inactivation with lidocaine is not equivalent to inhibition with GABAA -R agonists was proposed. This is a step in defining the overall switching circuitry that underlies anaesthesia.
-
Cold hypersensitivity is evident in a range of neuropathies and can evoke sensations of paradoxical burning cold pain. Ciguatoxin poisoning is known to induce a pain syndrome caused by consumption of contaminated tropical fish that can persist for months and include pruritus and cold allodynia; at present no suitable treatment is available. This study examined, for the first time, the neural substrates and molecular components of Pacific ciguatoxin-2-induced cold hypersensitivity. ⋯ In naive rats, neither innocuous nor noxious cold-evoked neuronal responses were inhibited by antagonists of Nav 1.8, TRPA1 or TRPM8 alone. Ciguatoxins may confer cold sensitivity to a subpopulation of cold-insensitive Nav 1.8/TRPA1-positive primary afferents, which could underlie the cold allodynia reported in ciguatera. These data expand the understanding of central spinal cold sensitivity under normal conditions and the role of these ion channels in this translational rat model of ciguatoxin-induced hypersensitivity.
-
Human studies have shown that heterotopic nociceptive conditioning stimulation (HNCS) applied to a given body location reduces the percept and brain responses elicited by noxious test stimuli delivered at a remote body location. It remains unclear to what extent this effect of HNCS relies on the spinal-bulbar-spinal loop mediating the effect of diffuse noxious inhibitory controls (DNICs) described in animals, and/or on top-down cortical mechanisms modulating nociception. Importantly, some studies have examined the effects of HNCS on the brain responses to nociceptive input conveyed by Aδ-fibres. ⋯ We observed that (i) the perceived intensity of nociceptive Aδ- and C-stimuli was reduced during HNCS, and (ii) the ERPs elicited by Aδ- and Aβ- and C-stimuli were also reduced during HNCS. Importantly, because Aβ-ERPs are related to primary afferents that ascend directly through the dorsal columns without being relayed at spinal level, the modulation of these responses may not be explained by an influence of descending projections modulating the transmission of nociceptive input at spinal level. Therefore, our results indicate that, in humans, HNCS should be used with caution as a direct measure of DNIC-related mechanisms.
-
Recently, evidence has emerged suggesting a role for the paraventricular nucleus of the thalamus (PVT) in the processing of reward-associated cues. However, the specific role of the PVT in these processes has yet to be elucidated. Here we use an animal model that captures individual variation in response to discrete reward-associated cues to further assess the role of the PVT in stimulus-reward learning. ⋯ Results indicate that PVT lesions prior to acquisition amplify the differences between phenotypes - increasing sign-tracking and attenuating goal-tracking behavior. Lesions of the PVT after rats had acquired their respective conditioned responses also attenuated the expression of the goal-tracking response, and increased the sign-tracking response, but did so selectively in goal-trackers. These results suggest that the PVT acts to suppress the attribution of incentive salience to reward cues, as disruption of the functional activity within this structure enhances the tendency to sign-track.