The European journal of neuroscience
-
It is currently believed that prostaglandin (PG) of E2 type plays a crucial role in transferring the information received from circulating immune factors to brain parenchymal cells. Although PGE2 is synthesized quite essentially by cells of the blood-brain barrier, the organization and regulation of its receptor subtypes within neuronal elements remain unknown. In this study, intravenous (i.v.) injection of the endotoxin lipopolysaccharide (LPS) or recombinant rat interleukin-1beta (IL-1beta), and intramuscular (i.m.) injection of turpentine were used as different models of systemic immune stimuli. ⋯ Moreover, the systemic immunogenic insults caused a significant increase in the EP2 mRNA levels in the CeA, SFO, AP and the leptomeninges. These data provide a distinct pattern of EP2 and EP4 expression throughout the rat brain under both basal and immune-challenged conditions, and underlie the possible role of the EP4 subtype in mediating the effects of PGE2 on different autonomic and neuroendocrine functions. The presence of Fos-ir nuclei in various populations of EP4 neurons of IL-1beta-treated animals clearly supports this concept and suggests that the selectivity of the neuronal response during systemic inflammation may depend on the expression of specific PGE2 receptors in key structures of the brain.
-
Subpopulations of alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA) receptors that are either permeable or impermeable to Ca2+ are expressed on dorsal horn neurons in culture. While both mediate synaptic transmission, the Ca2+ -permeable AMPA receptors provide a Ca2+ signal that may result in a transient change in synaptic strength [Gu, J. G., Albuquerque, C., Lee, C. ⋯ NK1 receptor-expressing dorsal horn neurons include many of the projection neurons in the nociceptive spino-thalamic pathway. Thus, we have identified two populations of dorsal horn neurons representing important components of dorsal horn function that express Ca2+-permeable AMPA receptors. Furthermore, we show that several subpopulations of putative excitatory interneurons defined by calretinin and calbindin expression do not express Ca2+-permeable AMPA receptors.
-
Synchronous oscillations of intracellular calcium concentration ([Ca2+]i) and of membrane potential occurred in a limited population of glutamatergic hippocampal neurons grown in primary cultures. The oscillatory activity occurred in synaptically connected cells only when they were in the presence of astrocytes. ⋯ Moreover, in neurons not spontaneously oscillating, though in the presence of astrocytes, oscillations were induced by exogenous L-glutamate, but not by the stereoisomer D-glutamate, which is not taken up by glutamate transporters. These data demonstrate that astrocytes are essential for neuronal oscillatory activity and provide evidence that removal of glutamate from the synaptic environment is one of the major mechanisms by which glial cells allow the repetitive excitation of the postsynaptic cell.
-
In the pteropod mollusc Clione limacina, two different groups of motoneurons innervate two physiologically identical wing muscles (dorsal and ventral). When motoneuron axons are crushed in the nerve of whole animals regeneration starts. In its course motoneurons initially project to both the correct and incorrect muscles. ⋯ In these experiments incorrect connections were stable and were not eliminated at the later stages, as happened in experiments in which both muscles were accessible. In whole-animal experiments with reduced size of the muscles, a normal pattern of regeneration was conserved although not all incorrect connections were eliminated. Thus, in the course of regeneration: (i) locomotor motoneurons make connections with both correct and incorrect muscles; (ii) if for some group of motoneurons the correct targets are unavailable, the incorrect connections survive and become stable; (iii) if both groups of motoneurons have a choice between the correct and incorrect targets, initial mixed innervation is replaced by purely correct innervation; (iv) elimination of incorrect synapses could be a result of the competition between correct and incorrect synapses of the same neuron.
-
Evidence suggests that nerve growth factor (NGF) is an important mediator in inflammatory pain states: NGF levels increase in inflamed tissue, and neutralization of endogenous NGF prevents the hyperalgesia which normally develops during inflammation of the skin. Here we asked whether NGF contributes to sensitization of primary afferent nociceptors, which are an important component of pain and hyperalgesia in inflamed tissue. An in vitro skin nerve preparation of the rat was used to directly record the receptive properties of thin myelinated (Adelta) and unmyelinated (C) nociceptors innervating normal hairy skin, carrageenan-inflamed skin and carrageenan-inflamed skin where endogenous NGF had been neutralized by application of a trkA-IgG (tyrosine kinase Aimmunoglobulin G) fusion molecule. ⋯ By contrast, the mechanical threshold of nociceptive afferents did not change during inflammation. When the NGF-neutralizing molecule trkA-IgG was coadministered with carrageenan at the onset of the inflammation, primary afferent nociceptors did not sensitize and displayed essentially normal response properties, although the inflammation as evidenced by tissue oedema developed normally. We therefore conclude that NGF is a crucial component for the sensitization of primary afferent nociceptors associated with tissue inflammation.