The European journal of neuroscience
-
Comparative Study
Axonal injury-dependent induction of the peripheral benzodiazepine receptor in small-diameter adult rat primary sensory neurons.
The peripheral benzodiazepine receptor (PBR), a benzodiazepine but not gamma-aminobutyric acid-binding mitochondrial membrane protein, has roles in steroid production, energy metabolism, cell survival and growth. PBR expression in the nervous system has been reported in non-neuronal glial and immune cells. We now show expression of both PBR mRNA and protein, and the appearance of binding of a synthetic ligand, [(3)H]PK11195, in dorsal root ganglion (DRG) neurons following injury to the sciatic nerve. ⋯ No non-neuronal PBR expression is detected, unlike its putative endogenous ligand the diazepam binding inhibitor (DBI), which is expressed only in non-neuronal cells, including the satellite cells that surround DRG neurons. DBI expression does not change with sciatic nerve transection. PBR acting on small-calibre neurons could play a role in the adaptive survival and growth responses of these cells to injury of their axons.
-
In hippocampus and other regions, alpha-amino-3-hydroxy-5-methylisoxazole-4-propionate (AMPA) receptors are inserted into synapses during long-term potentiation and removed during long-term depression. However, little is known about regulation of AMPA receptor trafficking in the nucleus accumbens (NAc), despite growing evidence that glutamate-dependent forms of plasticity in the NAc contribute to drug addiction. Using postnatal rat NAc cultures and an immunocytochemical method that selectively detects newly internalized GluR1, we studied the regulation of AMPA receptor internalization in NAc neurons by glutamate agonists. ⋯ We interpret these findings to suggest that NMDA and AMPA ultimately trigger GluR1 internalization through the same NMDA receptor-dependent pathway. The effect of glutamate was also partially blocked by the group 1 metabotropic glutamate receptor antagonist N-phenyl-7-(hydroxyimino)cyclopropa[b]chromen-1a-carboxamide (PHCCC; 50 microM), while the group 1 agonist 3,5-dihydroxyphenylglycine (DHPG; 50 microM) stimulated GluR1 internalization. These data suggest that AMPA receptors on NAc neurons may be subject to rapid regulation of their surface expression in response to changes in the activity of glutamate inputs from cortical and limbic regions.
-
Comparative Study
Evidence for differential modulation of conditioned aversion and fear-conditioned analgesia by CB1 receptors.
Fear-conditioned analgesia is an important survival response mediated by substrates controlling nociception and aversion. Cannabinoid(1) (CB(1)) receptors play an important role in nociception and aversion. However, their role in fear-conditioned analgesia has not been investigated. ⋯ SR141716A had no effect on contextually induced freezing during the first half of the test trial in rats receiving intra-plantar injection of saline. Administration of SR1417176A did, however, attenuate short-term extinction of contextually induced freezing and ultrasound emission in rats receiving intra-plantar saline, compared with vehicle-treated saline controls. These data suggest an important role for the CB(1) receptor in mediating fear-conditioned analgesia and provide evidence for differential modulation of conditioned aversive behaviour by CB(1) receptors during tonic, persistent pain.
-
Comparative Study
Transcranial direct current stimulation disrupts tactile perception.
The excitability of the cerebral cortex can be modulated by various transcranial stimulation techniques. Transcranial direct current stimulation (tDCS) offers the advantage of portable equipment and could, therefore, be used for ambulatory modulation of brain excitability. However, modulation of cortical excitability by tDCS has so far mostly been shown by indirect measures. ⋯ Cathodal stimulation compared with sham induced a prolonged decrease of tactile discrimination, while anodal and sham stimulation did not. Thus, cortical processing can be modulated in a behaviorally/perceptually meaningful way by weak transcranial current stimulation applied through portable technology. This finding offers a new perspective for the treatment of conditions characterized by alterations of cortical excitability.
-
Comparative Study
Fear memories induce a switch in stimulus response and signaling mechanisms for long-term potentiation in the lateral amygdala.
Activity-dependent modification of synapses is fundamental for information storage in the brain and underlies behavioral learning. Fear conditioning is a model of emotional memory and anxiety that is expressed as an enduring increase in synaptic strength in the lateral amygdala (LA). Here we analysed synaptic plasticity in the rat cortico-LA pathway during maintenance of fear memory. ⋯ HFS generates robust LTP that is dependent on N-methyl-d-aspartate receptor (NMDAR) and L-type voltage-gated calcium channel (VGCC) activation in control animals, whereas in fear-conditioned animals HFS LTP is NMDAR- and VGCC-independent. LFS-LTP is partially NMDAR-dependent, but VGCCs are necessary for potentiation in fear memory. Collectively, these results show that during maintenance of fear memory the stimulus requirements for amygdala afferents and critical signaling mechanisms for amygdala synaptic potentiation are altered, suggesting that cue-engaged synaptic mechanisms in the amygdala are dramatically affected as a result of emotional learning.