Journal of molecular neuroscience : MN
-
Clinical Trial
Association of innate immune single-nucleotide polymorphisms with the electroencephalogram during desflurane general anaesthesia.
The electroencephalogram (EEG) records the electrical activity of the brain and enables effects of anaesthetic drugs on brain functioning to be monitored. Identification of genes contributing to EEG variability during anaesthesia is important to the clinical application of anaesthesia monitoring and may provide an avenue to identify molecular mechanisms underlying the generation and regulation of brain oscillations. Central immune signalling can impact neuronal activity in the brain and accumulating evidence suggests an important role for cytokines as neuronal modulators. ⋯ MYD88 rs6853 (p = 6.7 × 10(-4)) and IL-1β rs1143627 in conjunction with rs6853 (p = 1.5 × 10(-3)) were associated with spindle amplitude, and IL-10 rs1800896 was associated with delta power (p = 1.3 × 10(-2)) suggesting involvement of cytokine signalling in modulation of EEG patterns during desflurane anaesthesia. BDNF rs6265 was associated with alpha power (p = 3.9 × 10(-3)), suggesting differences in neuronal plasticity might also influence EEG patterns during desflurane anaesthesia. This is the first study we are aware of that has investigated genetic polymorphisms that may influence the EEG during general anaesthesia.
-
Epigenetic mechanisms underlying nutrition (nutrition epigenetics) are important in understanding human health. Nutritional supplements, for example folic acid, a cofactor in one-carbon metabolism, regulate epigenetic alterations and may play an important role in the maintenance of neuronal integrity. Folic acid also ameliorates hyperhomocysteinemia, which is a consequence of elevated levels of homocysteine. ⋯ To test this hypothesis, we employed 8-weeks-old male wild-type (WT) cystathionine-beta-synthase heterozygote knockout methionine-fed (CBS+/− + Met), WT, and CBS+/− + Met mice supplemented with folic acid (FA) [WT + FA and CBS+/− + Met + FA, respectively, 0.0057-μg g−1 day−1 dose in drinking water/4 weeks]. Hyperhomocysteinemia in CBS+/− + Met mouse brain was accompanied by a decrease in methylenetetrahydrofolate reductase and an increase in S-adenosylhomocysteine hydrolase expression, symptoms of oxidative stress, upregulation of DNA methyltransferases, rise in matrix metalloproteinases, a drop in the tissue inhibitors of metalloproteinases, decreased expression of tight junction proteins, increased permeability of the blood-brain barrier, neurodegeneration, and synaptotoxicity. Supplementation of folic acid to CBS+/− + Met mouse brain led to a decrease in the homocysteine level and rescued pathogenic and epigenetic alterations, showing its protective efficacy against homocysteine-induced neurotoxicity.
-
Although the underlying mechanisms of isoflurane-induced cognitive impairments remain largely to be determined, neuronal inflammation and apoptosis are thought to be major contributors. Resveratrol is a naturally available herbal compound for the treatment of inflammatory and neurodegenerative diseases. We therefore aimed to investigate the effects of resveratrol on the isoflurane-induced cognitive impairments and the associated hippocampal inflammation responses and neuronal apoptosis in the aged mice. ⋯ All these effects induced by isoflurane were attenuated by resveratrol pretreatment. However, the isoflurane anesthesia had no significant effect on the hippocampal Sirt1. In conclusion, our results suggest that resveratrol attenuates the hippocampus-dependent cognitive impairment induced by isoflurane anesthesia through its anti-inflammation and anti-apoptosis effects in aged mice.
-
Increasing evidence underscores the strong, rapid, and sustained antidepressant properties of ketamine with a good tolerability profile in patients with depression; however, the underlying mechanisms are not fully elucidated. Neuregulin 1 (NRG1) is a bipolar disorder susceptibility gene and a biomarker of major depressive disorder, which regulates pyramidal neuron activity via ErbB4 in parvalbumin interneurons. Moreover, NRG1-ErbB4 signaling is reported to play a key role in the modulation of synaptic plasticity through regulating the neurotransmission. ⋯ The results showed that ketamine reduced the immobility time and latency to feed of rats receiving the FST, downregulated the levels of NRG1, phosphorylated ErbB4 (p-ErbB4), parvalbumin, 67-kDA isoform of glutamic acid decarboxylase (GAD67), gamma-aminobutyric acid (GABA), and upregulated the levels of glutamate in the rat prefrontal cortex and hippocampus. Pretreatment with NRG1 abolished both ketamine's antidepressant effects and ketamine-induced reduction in p-ErbB4, parvalbumin, GAD67, and GABA levels and increase in glutamate levels. These results suggest that the downregulation of NRG1-ErbB4 signaling in parvalbumin interneurons in the rat brain may be a mechanism underlying ketamine's antidepressant properties.
-
Treating neuropathic pain is a major clinical challenge, and several key molecules associated with nociception have been suggested as potential targets for novel analgesics. Many studies have reported the anti-nociceptive effects of glial cell-derived neurotrophic factor (GDNF), but the underlying mechanism remains largely unknown. The present study was performed to assess the effects of GDNF in a mouse model of chronic constriction injury (CCI)-induced neuropathic pain. ⋯ Together, these data demonstrated that E-cadherin-associated p120ctn was upregulated by GDNF and that this upregulation was inhibited by pre-treatment with DECMA-1. Moreover, DECMA-1 significantly inhibited the effect of GDNF on thermal hyperalgesia. These data suggest that GDNF might have a therapeutic potential for the treatment of CCI-induced neuropathic pain and that the E-cadherin/p120ctn might play a role in GDNF-induced attenuation of thermal hyperalgesia.