Cerebral cortex
-
Comparative Study
Unique contributions of distinct cholinergic projections to motor cortical plasticity and learning.
The cholinergic basal forebrain projects throughout the neocortex, exerting a critical role in modulating plasticity associated with normal learning. Cholinergic modulation of cortical plasticity could arise from 3 distinct mechanisms by 1) "direct" modulation via cholinergic inputs to regions undergoing plasticity, 2) "indirect" modulation via cholinergic projections to anterior, prefrontal attentional systems, or 3) modulating more global aspects of processing via distributed inputs throughout the cortex. To segregate these potential mechanisms, we investigated cholinergic-dependent reorganization of cortical motor representations in rats undergoing skilled motor learning. ⋯ Global cholinergic depletion perturbs map plasticity comparable with motor cortex depletions but results in significantly greater impairments in skilled motor acquisition. These findings indicate that local cholinergic activation within motor cortex, as opposed to indirect regulation of prefrontal systems, modulate cortical map plasticity and motor learning. More globally acting cholinergic mechanisms provide additional support for the acquisition of skilled motor behaviors, beyond those associated with cortical map reorganization.
-
Evidence shows that administration of D-galactose (D-gal) induces reactive oxygen species (ROS) production and inflammatory response resulting in neurodegenerative changes. Ursolic acid (UA), a triterpenoid compound, has been reported to possess antioxidant and anti-inflammatory properties. Our previous studies have demonstrated that UA could protect mouse brain against D-gal-induced oxidative damage. ⋯ Furthermore, the results also showed that UA significantly reduced the number of activated microglia cells and astrocytes, decreased the expression of CD11b and glial fibrillary acidic protein, downregulated the expression of iNOS and COX-2, and decreased interleukin (IL)-1β, IL-6, and tumor necrosis factor-α levels in the prefrontal cortex of D-gal-treated mice. Moreover, UA significantly decreased AGEs induced the expression of receptor for advanced glycation end products and inhibited NF-κB p65 nuclear translocation in the prefrontal cortex of D-gal-treated mice. The aforementioned effects of UA could attenuate brain inflammatory response.
-
The term "metaplasticity" refers to the modulation of the ability to induce synaptic plasticity of the form of long-term potentiation (LTP) or long-term depression (LTD) following prior activation of the synapses. While often electrophysiological manipulations are used to demonstrate this phenomenon, prior behavioral manipulations such as exposure to stress were also found to affect the ability to induce LTP and LTD. Interestingly, amygdala stimulation was found to have effects on subsequent LTP induction that resemble those of stress. ⋯ This form of metaplasticity is N-methyl-D-aspartic acid (NMDA)-dependent since the injection of the NMDA partial agonist D-cycloserine prevented the inhibition of LTP induced by prior exposure of stress or BLA activation. Furthermore, blocking NMDA receptors by MK801 before the exposure to stress prevented the ability of the emotional manipulation to inhibit the subsequent modulation of plasticity, resulting in impaired LTP in the mPFC. Taken together, these findings demonstrate a new form of NMDA-dependent emotional metaplasticity in the ventral hippocampus-mPFC pathway.
-
Damage to various regions of the prefrontal cortex (PFC) impairs decision making involving evaluations about risks and rewards. However, the specific contributions that different PFC subregions make to risk-based decision making are unclear. We investigated the effects of reversible inactivation of 4 subregions of the rat PFC (prelimbic medial PFC, orbitofrontal cortex [OFC], anterior cingulate, and insular cortex) on probabilistic (or risk) discounting. ⋯ Anterior cingulate or insular inactivations were without effect. The effects of prelimbic inactivations were not attributable to disruptions in response flexibility or judgments about the relative value of probabilistic rewards. Thus, the prelimbic, but not other PFC regions, plays a critical role in risk discounting, integrating information about changing reward probabilities to update value representations that facilitate efficient decision making.
-
The brain determines positions and movements of body parts from inputs arising at least from vision and proprioception. Using the brain event-related potential called the lateralized readiness potential, which reflects motor cortical activity during motor programming, we showed in a motor task that viewing one hand in a sagittal mirror-giving the impression to see the opposite hand-generated activity in the motor cortex of the seen hand (i.e., of the nonmoving hand hidden behind the mirror). ⋯ This dominance vision over proprioception was greatly reduced when the task was executed in the dark with hand position represented by small lights fixed on the moving hand, with no motor activity being recorded in the cortical area of the inactive hand. These results give new insights into how the brain weights and integrates visual and proprioceptive information in motor control.