Cerebral cortex
-
Several lines of evidence suggest that schizophrenia (SCZ) is associated with disrupted plasticity in the cortex. However, there is little direct neurophysiological evidence of aberrant long-term potentiation (LTP)-like plasticity in SCZ and little human evidence to establish a link between LTP to learning and memory. LTP was evaluated using a neurophysiological paradigm referred to as paired associative stimulation (PAS). ⋯ Compared with healthy subjects, patients with SCZ demonstrated significant MEP facilitation deficits following PAS and impaired rotary-pursuit motor learning. Across all subjects there was a significant association between LTP and motor skill learning. These data provide evidence for disrupted LTP in SCZ, whereas the association between LTP with motor skill learning suggests that the deficits in learning and memory in SCZ may be mediated through disordered LTP.
-
Emotional facial expressions can engender similar expressions in others. However, adaptive social and motivational behavior can require individuals to suppress, conceal, or override prepotent imitative responses. We predicted, in line with a theory of "emotion contagion," that when viewing a facial expression, expressing a different emotion would manifest as behavioral conflict and interference. ⋯ In contrast, nonemotional response conflict (Simon task) engaged a distinct frontostriatal network. Individual differences in empathy and emotion regulatory tendency predicted the magnitude of EEI-evoked regional activity with BA 47 and STS. Our findings point to these regions as providing a putative neural substrate underpinning a crucial adaptive aspect of social/emotional behavior.
-
To investigate the influence of stimulus duration on emotional processing, we measured changes of regional cerebral blood flow (rCBF) in 14 healthy subjects who viewed neutral or emotional images presented for 3 or 6 s. Presentation for 3 s reproduced the previous result of higher rCBF in inferior medial prefrontal cortex (IMPC) during neutral than emotional stimulation. Six-second presentation reverted this relationship, with activity in IMPC being higher during emotional stimulation. ⋯ Thus, prefrontal activity rises when a cognitive task accompanies emotional stimulation because several cognitive processes compete for attention. The IMPC may serve the mechanism of attention underlying the concept of a default mode of brain function, selecting among competitive inputs from multiple brain regions rather than just processing emotions. The results emphasize the importance of implicit cognitive processing during emotional activation, however, unintended.
-
Comparative Study
Excess of neurons in the human newborn mediodorsal thalamus compared with that of the adult.
The aim of this study was to quantify the total number of neurons and glial cells in the mediodorsal nucleus of the thalamus (MD) of 8 newborn human brains, in comparison to 8 adult human brains. The estimates of the cell numbers were obtained using the stereological principles of the optical fractionator. ⋯ The glial cell numbers were substantially higher in the adult brains, with an increase of almost 4 times from 10.6 million at birth to 36.3 million in the fully developed adult brain. This is the first demonstration of a higher number of human neurons in the brain of newborns compared with the adult.
-
Although feeling pain and touch has long been considered inherently private, recent neuroimaging and neurophysiological studies hint at the social implications of this experience. Here we used somatosensory-evoked potentials (SEPs) to investigate whether mere observation of painful and tactile stimuli delivered to a model would modulate neural activity in the somatic system of an onlooker. ⋯ Thus, modulation of S1 activity contingent upon observation of others' pain and touch may reflect the mapping of sensory qualities of observed painful and tactile stimuli. Results indicate that the S1 is not only involved in the actual perception of pain and touch but also plays an important role in extracting somatic features from social interactions.