Physiological research
-
Polymorphic CYP2D6 is the enzyme that activates the opioid analgesic tramadol by O-demethylation to its active metabolite O-demethyltramadol (M1). Our objective was to determine the opioid effects measured by pupillary response to tramadol of CYP2D6 genotyped volunteers in relation to the disposition of tramadol and M1 in plasma. Tramadol displayed phenotypic pharmacokinetics and it was possible to identify poor metabolizers (PM) with >99% confidence from the metabolic ratio (MR) in a single blood sample taken between 2.5 and 24 h post-dose. ⋯ The strongest correlations were for the single-point metabolic ratios at all sampling intervals versus the effects, with rs ranging from 0.85 to 0.89 (p<0.01). It is concluded that the concept of dual opioid/non-opioid action of the drug, though considerably stronger in EMs, is valid for both EM and PM subjects. This is the theoretical basis for the frequent use and satisfactory efficacy of tramadol in clinical practice when given to genetically non-selected population.
-
The microcirculation plays a crucial role in the interaction between blood and tissues both in physiological and pathophysiological states. Despite its critical role in numerous diseases including diabetes, hypertension, sepsis or multiple organ failure, methods for direct visualization and quantitative assessment of human microcirculation at the bedside are limited. ⋯ Thus, there is a great effort to validate OPS imaging for various clinical purposes. The principles of OPS imaging, validation studies, its advantages, limitations, methods of quantitative assessment and current experience in clinical practice are discussed.
-
Noble gases are known for their inertness. They do not react chemically with any element at normal temperature and pressure. Through that, some of them are known to be biologically active by their sedative, hypnotic and analgesic properties. ⋯ Xenon was found to be organ-protective. Recent animal experiments indicated that xenon decreases infarction size after ischemic attack on brain or heart. The goal of our study is to check if hyperbaric argon has properties similar to those of xenon.
-
Physiological research · Jan 2006
Perfusion pressure manipulation in porcine sepsis: effects on intestinal hemodynamics.
Limited information is available about selection of the threshold for arterial blood pressure in critically ill patients, particularly in sepsis when normal organ blood flow autoregulation may be altered. The present experimental study investigated whether increasing perfusion pressure using norepinephrine in normotensive hyperdynamic porcine bacteremia affects intestinal macro- and microcirculation. Nine pigs received continuous i.v. administration of Pseudomonas aeruginosa (PSAE) to develop hyperdynamic, normotensive (mean arterial pressure [MAP] 65 mm Hg) sepsis. ⋯ Similarly, norepinephrine did not change either LDF(gut) or PCO(2) gap. In this hyperdynamic, normotensive porcine bacteremia, norepinephrine-induced increase in perfusion pressure exhibited neither beneficial nor deleterious effects on intestinal macrocirculatory blood flow and ileal mucosal microcirculation. The lack of changes suggests that the gut perfusion was within its autoregulatory range.
-
Physiological research · Jan 2006
Blood phagocyte activation during open heart surgery with cardiopulmonary bypass.
Open heart surgery with a cardiopulmonary bypass (CPB) is associated with a systemic inflammatory response which significantly contributes to adverse postoperative complications. The purpose of this study was to characterize the activation of blood phagocytes during open heart surgery with CPB. Blood samples were collected during and up to 24 h after surgery. ⋯ The activation of blood phagocytes was affirmed by changes in surface receptors involved in the adhesion and migration of leukocytes (CD11b, CD62L and CD31). Gene arrays also confirmed the activation of leukocytes 4 h after reperfusion. In conclusion, open heart surgery with a cardiopulmonary bypass was found to be associated with a rapid and pronounced activation of blood phagocytes and complement activation which was partly independent at the onset of CPB.