Reviews in medical virology
-
The novel coronavirus disease 2019 (COVID-19) is rapidly expanding and causing many deaths all over the world with the World Health Organization (WHO) declaring a pandemic in March 2020. Current therapeutic options are limited and there is no registered and/or definite treatment or vaccine for this disease or the causative infection, severe acute respiratory coronavirus 2 syndrome (SARS-CoV-2). ⋯ It can induce ACE2/Ang-(1-7)/MasR axis activity and inhibits renin and the ACE/Ang II/AT1R axis, thereby increasing expression and concentration of ACE2, MasR and Ang-(1-7) and having a potential protective role against acute lung injury (ALI)/acute respiratory distress syndrome (ARDS). Therefore, targeting the unbalanced RAS and ACE2 down-regulation with vitamin D in SARS-CoV-2 infection is a potential therapeutic approach to combat COVID-19 and induced ARDS.
-
The SARS-Cov-2 is a single-stranded RNA virus composed of 16 non-structural proteins (NSP 1-16) with specific roles in the replication of coronaviruses. NSP3 has the property to block host innate immune response and to promote cytokine expression. NSP5 can inhibit interferon (IFN) signalling and NSP16 prevents MAD5 recognition, depressing the innate immunity. ⋯ These systemic conditions share polymorphous cutaneous lesions where innate immune system is involved in the histopathological findings with acute respiratory distress syndrome, hypercoagulability, hyperferritinemia, increased serum levels of D-dimer, lactic dehydrogenase, reactive-C-protein and serum A amyloid. It is described that several polymorphous cutaneous lesions similar to erythema pernio, urticarial rashes, diffuse or disseminated erythema, livedo racemosa, blue toe syndrome, retiform purpura, vesicles lesions, and purpuric exanthema or exanthema with clinical aspects of symmetrical drug-related intertriginous and flexural exanthema. This review describes the complexity of Covid-19, its pathophysiological and clinical aspects.
-
Human Coronaviruses (HCoVs) have long been known as respiratory viruses. However, there are reports of neurological findings in HCoV infections, particularly in patients infected with the novel severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) amid Coronavirus disease 2019 (COVID-19) pandemic. ⋯ This review of literature shows the magnitude of neurological conditions associated with HCoV infections, including SARS-CoV-2. This review emphasises, that, during HCoV outbreaks, such as COVID-19, a focus on early detection of neurotropism, alertness for the resulting neurological complications, and the recognition of neurological risk factors are crucial to reduce the workload on hospitals, particularly intensive-care units and neurological departments.
-
In late December 2019, a group of patients was observed with pneumonia-like symptoms that were linked with a wet market in Wuhan, China. The patients were found to have a novel coronavirus genetically related to a bat coronavirus that was termed SARS-CoV-2. The virus gradually spread worldwide and was declared a pandemic by WHO. ⋯ Currently, there is no specific approved treatment for SARS-CoV-2, and various clinical trials are underway to explore better treatments. Some previously approved antiviral and other drugs have shown some in vitro activity. Here we summarize the fight against this novel coronavirus with particular focus on the different treatment options and clinical trials exploring treatment as well as work done toward development of vaccines.
-
Comment Review
The basic reproduction number of SARS-CoV-2 in Wuhan is about to die out, how about the rest of the World?
The virologically confirmed cases of a new coronavirus disease (COVID-19) in the world are rapidly increasing, leading epidemiologists and mathematicians to construct transmission models that aim to predict the future course of the current pandemic. The transmissibility of a virus is measured by the basic reproduction number ( R0 ), which measures the average number of new cases generated per typical infectious case. ⋯ According to these articles, the basic reproduction number of the virus epicentre Wuhan has now declined below the important threshold value of 1.0 since the disease emerged. Ongoing modelling will inform the transmission rates seen in the new epicentres outside of China, including Italy, Iran and South Korea.