Cellular physiology and biochemistry : international journal of experimental cellular physiology, biochemistry, and pharmacology
-
Cell. Physiol. Biochem. · Jan 2019
Transcriptional Regulation of Nos2 via STAT5B Binding to Nos2 Gene Promoter Mediates Nitric Oxide Production: Relevance in β-Cell Maintenance.
Type 1 Diabetes (T1D) involves autoimmune attack due to reduced regulatory T cells as an effect of mutant Stat5b(C1462A) in non-obese diabetic (NOD) mice, a T1D model resulting in pancreatic β-cell destruction. Although reactive oxygen species are considered to orchestrate the immune attack, the role of nitric oxide (·NO) still remains debatable. Since JAK-STAT pathway is known to induce Nos2, we investigated the role of STAT5B in nitric oxide generation and oxidative stress. ⋯ Our study enables us to conclude that β-cell stress is aggravated by the incapability of STAT5B to induce Nos2 resulting in H₂O₂ accumulation and the ensuing oxidative stress enhances β-cell damage.
-
Cell. Physiol. Biochem. · Jan 2018
Simvastatin Attenuates Neurogenetic Damage and Improves Neurocongnitive Deficits Induced by Isoflurane in Neonatal Rats.
Isoflurane inhibited neurogenesis and induced subsequent neurocognitive deficits in developing brain. Simvastatin exerts neuroprotection in a wide range of brain injury models. In the present study, we investigated whether simvastatin could attenuate neurogenetic inhibition and cognitive deficits induced by isoflurane exposure in neonatal rats. ⋯ We for the first time showed that simvastatin, by upregulating Akt/GSK-3β signaling pathway, alleviated isoflurane-induced neurogenetic damage and neurocognitive deficits in developing rat brain.
-
Cell. Physiol. Biochem. · Jan 2018
Calcineurin/NFAT Signaling Modulates Pulmonary Artery Smooth Muscle Cell Proliferation, Migration and Apoptosis in Monocrotaline-Induced Pulmonary Arterial Hypertension Rats.
Pulmonary arterial hypertension (PAH) is a severe and debilitating disease characterized by remodeling of the pulmonary vessels, which is driven by excessive proliferation and migration and apoptosis resistance in pulmonary artery smooth muscle cells (PASMCs). The calcineurin (CaN)/nuclear factor of activated T-cells (NFAT) signaling pathway is the most important downstream signaling pathway of store-operated Ca2+ entry (SOCE), which is increased in PAH. CaN/NFAT has been reported to contribute to abnormal proliferation in chronic hypoxia (CH)-induced PAH. However, the effect of CaN/NFAT signaling on PASMC proliferation, migration and apoptosis in monocrotaline (MCT)-induced PAH remains unclear. ⋯ Our results demonstrate that CaN/NFAT signaling is activated and involved in the modulation of PASMC proliferation, migration and apoptosis in MCT-induced PAH.
-
Cell. Physiol. Biochem. · Jan 2018
ReviewKisspeptin/GPR54 System: What Do We Know About Its Role in Human Reproduction?
Kisspeptin is involved in the control of human reproduction bridging the gap between the sex steroid levels and feedback mechanisms that control the gonadotropin releasing hormone (GnRH) secretion; however, studies considering this peptide and infertility are limited. We conducted a review and critical assessment of available evidence considering kisspeptin structure, physiology, function in puberty and reproduction, its role in assisted reproduction treatments, kisspeptin dosage and the impact on KISS1 and GPR54 genes. Literature searches were conducted in PubMed using keywords related to: (i) kisspeptin or receptors, kisspeptin-1 (ii) reproduction or infertility or fertility (iii) gene and (iv) dosage or measurement or quantification or serum level, in human. ⋯ Inactivating and activating mutations in both KISS1 or GPR54 genes were associated with hypogonadotropic hypogonadism and precocious puberty. Despite this, studies considering kisspeptin and infertility are scarce. The understanding of the role of kisspeptin may lead to its use as a biomarker in infertility treatments and use in controlled ovarian hyperstimulation.
-
Cell. Physiol. Biochem. · Jan 2018
Comparative StudyComparison of the Effects of Ticagrelor and Clopidogrel on Inflammatory Factors, Vascular Endothelium Functions and Short-Term Prognosis in Patients with Acute ST-Segment Elevation Myocardial Infarction Undergoing Emergency Percutaneous Coronary Intervention: a Pilot Study.
Acute ST-segment elevation of myocardial infarction (STEMI) is the most severe type of acute coronary syndrome (ACS). Particular attention has been focused on studying the pathogenesis of STEMI, and how to prevent thrombosis, reduce inflammatory reaction, stabilize plaques and improve vascular endothelial functions to preserve the survived myocardium. This study aimed to compare the anti-inflammatory endothelium-protective effects, clinical prognosis, and relevant bleeding risks of ticagrelor versus clopidogrel in patients with STEMI who underwent urgent percutaneous coronary intervention (PCI) and provide certain experimental evidence and a theoretical basis for the selection of safe and effective drugs and their proper dosage, thereby further guiding clinical medication. ⋯ Compared with clopidogrel, ticagrelor appears to rapidly reduce the prevalence of inflammatory reactions and stabilize the functions of vascular endothelium to improve the stability of atherosclerotic plaque and decrease the occurrence rate of thrombosis as well as ischemic outcome events without any obvious increase in the risk of bleeding in patients with acute STEMI receiving urgent PCI. This renders it a potential drug for clinical practice. At the same time, measurement of ESM-1, a new biological marker for vascular endothelial function disorder, could possibly become a simple, effective, and practical new method for clinical evaluation of risk stratification of patients with acute STEMI at admission.