Cellular physiology and biochemistry : international journal of experimental cellular physiology, biochemistry, and pharmacology
-
Cell. Physiol. Biochem. · Jan 2018
Cinobufagin Induces Apoptosis in Osteosarcoma Cells Via the Mitochondria-Mediated Apoptotic Pathway.
Osteosarcoma is a common primary malignant bone tumor that mainly occurs in childhood and adolescence. Despite developments in the diagnosis and treatment of osteosarcoma, the prognosis is still very poor. Cinobufagin is an active component in the anti-tumor Chinese medicine called "Chan Su", and we previously revealed that cinobufagin induced apoptosis and reduced the viability of osteosarcoma cells; however, the underlying mechanism remains to be elucidated. Herein, the present study was undertaken to illuminate the molecular mechanism of cinobufagin-induced apoptosis of osteosarcoma cell. ⋯ Our present data demonstrated that cinobufagin triggered cell apoptosis in osteosarcoma cells via the intrinsic mitochondria-dependent apoptosis pathway by the accumulation of ROS and the loss of ΔΨm. In an in vivo subcutaneous xenograft model, cinobufagin exhibited excellent tumor inhibitory effects. These results suggest that cinobufagin might potentially be further developed as an anti-tumor candidate for treating osteosarcoma patients in the clinic.
-
Cell. Physiol. Biochem. · Jan 2018
Altered Long Noncoding RNA and Messenger RNA Expression in Experimental Intracerebral Hemorrhage - a Preliminary Study.
Functional recovery in the chronic phase is a difficult problem in intracerebral hemorrhage (ICH) treatment. Long noncoding RNAs (lncRNAs) are demonstrated to be involved in central nervous system (CNS) disorders. However, the roles of lncRNAs in post-ICH injury and repair are poorly understood, especially those that may be attributed to long-term neurological deficit. The present study depicted the lncRNA and messenger RNA (mRNA) profile by microarray at late stage after an experimental ICH. ⋯ Mitochondrial matrix, reduced G-protein coupled receptor activity, and impaired olfactory transduction may be involved in the sequelae following ICH. Further, these dysregulated lncRNAs and mRNAs may be the promising therapeutic targets to overcome obstacles in functional recovery following ICH.
-
Cell. Physiol. Biochem. · Jan 2018
Activation of Cyclooxygenase-2 by ATF4 During Endoplasmic Reticulum Stress Regulates Kidney Podocyte Autophagy Induced by Lupus Nephritis.
Autophagy plays an essential role in lupus nephritis (LN)-induced kidney injury, although the mechanism of action remains obscure. We investigated the role of cyclooxygenase-2 (COX-2) and the ATF4 endoplasmic reticulum (ER) stress pathway in LN-induced podocyte autophagy. ⋯ Our study suggests a novel molecular mechanism by which COX2 overexpression, induced by the ATF4 ER stress pathway, contributes to LN-induced kidney autophagy and injury. These data demonstrate that COX-2 may be a potential therapeutic target against LN-induced nephropathy.
-
Cell. Physiol. Biochem. · Jan 2018
Micro Integral Membrane Protein (MIMP), a Newly Discovered Anti-Inflammatory Protein of Lactobacillus Plantarum, Enhances the Gut Barrier and Modulates Microbiota and Inflammatory Cytokines.
Recent studies have demonstrated that the manipulation of the gut microbiome represents a promising treatment for inflammatory bowel disease (IBD). We previously identified micro integral membrane protein (MIMP) as the smallest domain of surface layer protein from Lactobacillus Plantarum. However, the therapeutic relevance of MIMP in IBD remains unknown. ⋯ Our results suggested that MIMP showed a significant anti-inflammatory effect through regulating the gut barrier, microbiota and inflammatory cytokines. MIMP may have translational relevance as clinically relevant therapy for IBD patients.
-
Cell. Physiol. Biochem. · Jan 2018
Dental Follicle Stem Cells Ameliorate Lipopolysaccharide-Induced Inflammation by Secreting TGF-β3 and TSP-1 to Elicit Macrophage M2 Polarization.
Increasing evidence has demonstrated the novel roles of mesenchymal stem cells (MSCs) in immunotherapy. However, difficulty in acquiring these cells and possible ethical issues limited their application. Recently, we have isolated a unique MSC population from dental follicles with potent stem cell-like properties. This study focused on the effects of dental follicle stem cells (DFSCs) on macrophage activation and polarization to determine their role in immunomodulation and to test if DFSCs are a promising cell source for MSC-based immunotherapy. ⋯ These results indicated that DFSCs can reprogram macrophages into the anti-inflammatory M2 phenotype, the paracrine factors TGF-β3 and TSP-1 may be one of the underlying mechanisms. This study supports the hypothesis that DFSCs are promising for MSC-based immunotherapy.