Journal of biopharmaceutical statistics
-
Administration of biological therapeutics can generate undesirable immune responses that may induce anti-drug antibodies (ADAs). Immunogenicity can negatively affect patients, ranging from mild reactive effect to hypersensitivity reactions or even serious autoimmune diseases. Assessment of immunogenicity is critical as the ADAs can adversely impact the efficacy and safety of the drug products. ⋯ The random effects, following a skew-t or log-gamma distribution, can incorporate the skewed and heavy-tailed responses and the correlation among repeated measurements. Simulation study is conducted to compare the proposed method with the current normal and nonparametric alternatives. The proposed models are also applied to a real dataset generated from assay validation studies.
-
We propose a method for determining the criticality of residual host cell DNA, which is characterized through two attributes, namely the size and amount of residual DNA in biopharmaceutical product. By applying a mechanistic modeling approach to the problem, we establish the linkage between residual DNA and product safety measured in terms of immunogenicity, oncogenicity, and infectivity. Such a link makes it possible to establish acceptable ranges of residual DNA size and amount. Application of the method is illustrated through two real-life examples related to a vaccine manufactured in Madin Darby Canine Kidney cell line and a monoclonal antibody using Chinese hamster ovary (CHO) cell line as host cells.
-
In quality control of drug products, tolerance intervals are commonly used methods to assure a certain proportion of the products covered within a pre-specified acceptance interval. Depending on the nature of the quality attributes, the corresponding acceptance interval could be one-sided or two-sided. ⋯ To better utilize tolerance intervals for quality assurance, we reviewed the computation method and studied their statistical properties in terms of batch acceptance probability in this article. We also illustrate the application of one-sided and two-sided tolerance, as well as two one-sided tests through the examples of dose content uniformity test, delivered dose uniformity test, and dissolution test.
-
The cut point of the immunogenicity screening assay is the level of response of the immunogenicity screening assay at or above which a sample is defined to be positive and below which it is defined to be negative. The Food and Drug Administration Guidance for Industry on Assay Development for Immunogenicity Testing of Therapeutic recommends the cut point to be an upper 95 percentile of the negative control patients. In this article, we assume that the assay data are a random sample from a normal distribution. ⋯ The selected methods evaluated for the immunogenicity screening assay cut-point determination are sample normal percentile, the exact lower confidence limit of a normal percentile (Chakraborti and Li, 2007) and the approximate lower confidence limit of a normal percentile. It is shown that the actual coverage probability for the lower confidence limit of a normal percentile using approximate normal method is much larger than the required confidence level with a small number of assays conducted in practice. We recommend using the exact lower confidence limit of a normal percentile for cut-point determination.
-
According to ICH Q6A (1999), a specification is defined as a list of tests, references to analytical procedures, and appropriate acceptance criteria, which are numerical limits, ranges, or other criteria for the tests described. For drug products, specifications usually consist of test methods and acceptance criteria for assay, impurities, pH, dissolution, moisture, and microbial limits, depending on the dosage forms. They are usually proposed by the manufacturers and subject to the regulatory approval for use. ⋯ In this article, we describe and discuss the statistical issues of commonly used approaches in setting or revising specifications (usually tighten the limits), including reference interval, (Min, Max) method, tolerance interval, and confidence limit of percentiles. We also compare their performance in terms of the interval width and the intended coverage. Based on our study results and review experiences, we make some recommendations on how to select the appropriate statistical methods in setting product specifications to better ensure the product quality.