Clinical infectious diseases : an official publication of the Infectious Diseases Society of America
-
Given the potential worsening clinical severity of 2009 pandemic influenza A (H1N1) virus (pH1N1) infection from spring to fall 2009, we conducted a clinical case series among patients hospitalized with pH1N1 infection from September through October 2009. A case patient was defined as a hospitalized person who had test results positive for pH1N1 virus by real-time reverse-transcription polymerase chain reaction. Among 255 hospitalized patients, 34% were admitted to an intensive care unit and 8% died. ⋯ Chest radiographs obtained at hospital admission that had findings that were consistent with pneumonia were noted in 103 (46%) of 255 patients. Among 255 hospitalized patients, 208 (82%) received neuraminidase inhibitors, but only 47% had treatment started ≤ 2 days after illness onset. Overall, characteristics of hospitalized patients with pH1N1 infection in fall 2009 were similar to characteristics of patients hospitalized with pH1N1 infection in spring 2009, which suggests that clinical severity did not change substantially over this period.
-
During August through September 2009, a surge in emergency department (ED) visits for 2009 pandemic influenza A (pH1N1) illness occurred in Georgia, particularly among children. To understand surge preparedness and capacity, we obtained influenza-like illness (ILI) ED visit data from the Georgia State Electronic Notifiable Disease Surveillance System (SendSS) and conducted a retrospective, Internet-based survey among all 26 metro Atlanta ED managers with reference to the period 1 July-1 October 2009. ⋯ Most (92%) of the facilities had current pandemic influenza plans. Pandemic planning can help to ensure preparedness for natural and man-made disasters and for future influenza pandemics.
-
A strong evidence base provides the foundation for planning and response strategies. Investments in pandemic preparedness included support for research that aided early detection, response, and control of the 2009 influenza A (H1N1) (pH1N1) pandemic. Scientific investigations conducted during the pandemic guided understanding of the virus, disease severity, and epidemiologic risk factors. ⋯ Communication of this evolving evidence base was important to sustaining credibility of public health. Areas where substantial controversy emerged, such as the optimal approach to respiratory protection of healthcare workers, often suffered from gaps in the evidence base. Many aspects of the 2009-2010 pandemic influenza experience provide ongoing opportunities for additional study, which will strengthen plans for future pandemic response as well as control of seasonal influenza.
-
During the spring of 2009, pandemic influenza A (H1N1) virus (pH1N1) was recognized and rapidly spread worldwide. To describe the geographic distribution and patient characteristics of pH1N1-associated deaths in the United States, the Centers for Disease Control and Prevention requested information from health departments on all laboratory-confirmed pH1N1 deaths reported from 17 April through 23 July 2009. Data were collected using medical charts, medical examiner reports, and death certificates. ⋯ Seventy-six percent of deaths occurred in persons aged 18-65 years, and 9% occurred in persons aged ≥ 65 years. Underlying medical conditions were reported for 78% of deaths: chronic lung disease among adults (39%) and neurologic disease among children (54%). Overall mortality associated with pH1N1 was low; however, the majority of deaths occurred in persons aged <65 years with underlying medical conditions.
-
In April 2009, following the first school closure due to 2009 pandemic influenza A (H1N1) (pH1N1) in Chicago, Illinois, area hospitals were inundated with patients presenting with influenza-like illness (ILI). The extent of disease spread into the surrounding community was unclear. We performed a household survey to estimate the ILI attack rate among community residents and compared reported ILI with confirmed pH1N1 cases and ILI surveillance data (ie, hospital ILI visits, influenza testing, and school absenteeism). ⋯ Trends in surveillance data peaked during the same week and rapidly decreased to near baseline. Public awareness and health care practices impact standard ILI surveillance data. Community-based surveys are a valuable tool to help assess the burden of ILI in a community.