Experimental brain research. Experimentelle Hirnforschung. Expérimentation cérébrale
-
Randomized Controlled Trial
Effects of local anesthetics on somatosensory function in the temporomandibular joint area.
There is a need for systematic studies regarding the pathophysiology and pain mechanisms of somatosensory function in the temporomandibular joint (TMJ). So far, the effects on somatosensory functions of local anesthetics (LA) applied to the auriculotemporal (AT) nerve or intraarticularly (IA) into the TMJ have not been studied systemically. This study aimed to examine in a double-blinded, placebo-controlled manner the effects of LA on mechanical and thermal sensitivity in the TMJ area. ⋯ No other measures showed a significant change after the injections. Our results showed that IA bupivacaine injection in healthy subjects has no effect on the sensitivity of the TMJ or surrounding area, while AT nerve block has a more pronounced effect on deep mechanical, but not on superficial mechanical or thermal sensitivity. Further research to investigate the effect of LA on somatosensory functions in TMJ patients in comparison with this study results will give valuable information about the sensitivity in the TMJ area.
-
Using near infrared spectroscopy and repetitive transcranial magnetic stimulation (rTMS), we studied interhemispheric interactions between bilateral motor and sensory cortices in humans. RTMS consisted of a triple-pulse burst (50 Hz) repeated every 200 m for 2 s (10 bursts, 30 pulses); one kind of theta burst TMS (TBS) (Huang et al. in Neuron 45:201-206, 2005). The hemoglobin concentration changes were recorded at the right prefrontal cortex, premotor area (PM), primary hand motor area (M1) and primary sensory area (S1) during and after TBS over the left PM, M1 and S1 or sham stimulation in eight normal volunteers. ⋯ These results suggest that there are mainly inhibitory interactions between bilateral PMs and bilateral sensorimotor cortices in humans. Those are partly compatible with the previous findings. In addition to between the primary motor cortices, bilateral connection is requisite for smooth bimanual coordination between the sensory cortices or premotor cortices.
-
Vibratory stimulation of the neck muscles can elicit illusory drift of a visual target; after vibration stops, motion in the opposite direction is perceived. This motion aftereffect (MAE) could be due to adaptation of proprioceptive mechanisms that encode head orientation, or at a stage where visual and proprioceptive information are combined. To distinguish between these two possibilities, we applied vibratory stimulation to dorsolateral neck muscles for 15-s periods alternating with 15-s periods without vibration. ⋯ Results from our previous study ruled out an explanation based on suppression of eye movements. Thus, the most likely site responsible for the visual aftereffect lies with bimodal mechanisms combining proprioceptive and visual information. We conclude that the bimodal mechanisms adapted more quickly than the proprioceptive mechanisms from which they received input.
-
Visuospatial working memory mechanisms have been studied extensively at single cell level in the dorsolateral prefrontal cortex (PFCd) in nonhuman primates. Despite the importance of short-term memory of sound location for behavioral orientation, there are only a few studies on auditory spatial working memory. The purpose of this study was to investigate neuronal mechanisms underlying working memory processing of auditory and visual location information at single cell level in the PFCd. ⋯ Most neurons that were activated during the delay period were modality specific, responding either during visual or auditory trials. All bimodal delay related neurons that responded during both visual and auditory trials were spatially nonselective. The results of the present study suggest that in addition to the modality specific parallel mechanism, working memory of auditory and visual space also involves modality independent processing at cellular level in the PFCd.
-
Neurons located in the border region between the interpolaris and caudalis subdivisions of the spinal trigeminal nucleus (Vi/Vc) are second order neurons of the corneal reflex, receiving corneal afferents and projecting to the lid closing, orbicularis oculi (OO) motoneurons. Recordings of Vi/Vc neurons identified by antidromic activation from stimulation of the facial nucleus and non-identified Vi/Vc neurons reveal two neuron types, phasic and tonic. Corneal stimulation elicits Adelta latency action potentials that occur early enough to initiate OO contraction and C-fiber latency action potentials that can modulate the end of the blink in phasic Vi/Vc neurons. ⋯ Vi/Vc neuron discharge, however, is slightly larger for the second blink. Our data indicate that second-order Vi/Vc neurons do not determine the specific pattern of OO muscle activity; rather Vi/Vc neurons initiate OO motoneuron discharge and program the activity of another circuit that generates the late phase of the blink. The Vc/C1 suppression of Vi/Vc neurons suggests that the Vc/C1 region provides an "internal model" of the intended blink.