Experimental brain research. Experimentelle Hirnforschung. Expérimentation cérébrale
-
The timecourse of cell death in adult dorsal root ganglia after peripheral axotomy has not been fully characterised. It is not clear whether neuronal death begins within 1 week of axotomy or continues beyond 2 months after axotomy. Similarly, neither the timecourse of satellite cell death in the adult, nor the effect of nerve repair has been described. ⋯ Neuronal death is modulated by peripheral nerve repair and by its timing after axotomy. Secondary satellite cell death also occurs, peaking 2 months after axotomy. These results provide a logical framework for future research into neuronal and satellite cell death within the dorsal root ganglia and provide further insight into the process of axotomy induced neuronal death.
-
Comparative Study
Modulation of rodent cortical motor excitability by somatosensory input.
It is assumed that somatosensory input is required for motor learning and recovery from focal brain injury. In rodents and other mammals, corticocortical projections between somatosensory and motor cortices are modified by patterned input. Whether and how motor cortex function is modulated by somatosensory input to support motor learning is largely unknown. ⋯ It is concluded that somatosensory input increases motor excitability in rat. This increase outlasts the stimulation period and is mediated by supraspinal structures, likely motor cortex. Modulation of motor cortex excitability by somatosensory input may play a role in motor learning and recovery from lesion.
-
The present study addressed the question of how do anticipatory postural adjustments (APA) develop during childhood, in the range from 4 to 8 years, during a bimanual load-lifting task. This task required maintaining the stabilisation of the forearm position despite imposed or voluntary unloading of the forearm. Elbow angle and multiple surface EMG were recorded on the child postural forearm supporting a load. ⋯ In fact, regression of the co-contraction pattern was observed with age, together with selection of the adult-like reciprocal pattern. Mastering of the timing adjustments of the reciprocal pattern, characterised in adults by a well-synchronised co-ordination between onset of the flexor muscle contraction of the manual arm and onset of the flexor muscle inhibition of the postural forearm, progressively improves during development. Moreover, these results suggest that the internal representation of the consequences of unloading on the forearm stabilisation, underlying anticipatory function during a bimanual co-ordination task, slowly build up during childhood.
-
Reaching to grasp is of fundamental importance to primate motor behavior. One descending motor pathway that contributes to the control of this behavior is the rubrospinal tract. An important source of origin of the rubrospinal tract is the magnocellular red nucleus (RNm). ⋯ RNm neurons of our sample were activated strongly during reach-to-grasp, and discharge of a third of the neurons tested depended on the spatial location of the object grasped. Discharge of RNm neurons and EMG activity of many of the distal and proximal forelimb muscles we tested were larger for reaching to grasp in the upper and/or right than lower and left target locations. Based on comparisons of each individual neuron's discharge patterns during reaches with and without preshaping the hand, we conclude that target location-dependent modulations in discharge rate of the majority of RNm neurons whose discharge differed for reaching to grasp in the four target locations contributed to aspects of hand preshaping that covaried with reach direction.
-
Comparative Study
Expression of neuregulin and ErbB3 and ErbB4 after a traumatic lesion in the ventral funiculus of the spinal cord and in the intact primary olfactory system.
Neuron-derived neuregulins have been implicated in the regulation of glial cell function and survival. This factor family and its receptors may therefore be assumed to be of importance for the cellular response to traumatic injury. In this study we have examined the distribution of mRNA for neuregulin 1 (NRG1), ErbB3 and ErbB4-receptor tyrosine kinases after a ventral funiculus lesion in the lumbar spinal cord (VFL). ⋯ ErbB4 had strong expression in the embryonic spinal cord, but no evidence for lesion-induced regulation of ErbB4 receptors could be found after the VFL. Our data show that ErbB3 in the ventral roots was upregulated after a VFL and that NRG1 mRNA was initially downregulated in the motoneurons. The lesion-induced changes in the expression of NRG1 and ErbB3 in the injured spinal cord and denervated ventral root can be assumed to be of importance for axonal growth and the regulation of glial cell survival.