ASAIO journal : a peer-reviewed journal of the American Society for Artificial Internal Organs
-
Cardiac arrest caused by acute pulmonary embolism is associated with high patient mortality. We reviewed patients who had cardiac arrest caused by acute pulmonary embolism. Between January 2001 and September 2013, we identified 20 patients at our institution with a confirmative diagnosis of acute pulmonary thromboembolism and cardiac arrest. ⋯ On the basis of the multivariate analysis, both cardiopulmonary resuscitation more than 15 minutes and absence of PCPS were significant risk factors affecting survival (p = 0.001 and 0.049, respectively). When the duration of cardiac arrest is short, surgical embolectomy is a viable option after cardiac arrest caused by pulmonary thromboembolism. Percutaneous cardiopulmonary support may be a useful tool for both stabilizing the patient and providing a bridge when deciding on further management options.
-
Extracorporeal membrane oxygenation (ECMO) is increasingly being used to support adults with severe forms of respiratory failure. Fueling the explosive growth is a combination of technological improvements and accumulating, although controversial, evidence. ⋯ Select patients with respiratory failure may be liberated from invasive mechanical ventilation altogether and some may undergo extensive physical therapy while receiving extracorporeal support. Current research may yield a true artificial lung with the potential to change the paradigm of treatment for adults with chronic respiratory failure.
-
Human leukocyte antigen (HLA) sensitization of pediatric heart recipients increases their risk of rejection and graft loss. As more children are placed on mechanical circulatory support (MCS) as a bridge to transplant, the risk factors for development of sensitization warrant further study. A single-center retrospective review of 36 children who received MCS identified 22 patients supported with either extracorporeal membrane oxygenation (ECMO) (n = 15) or ECMO-ventricular assist device (VAD) (n = 7) with paired (pre-MCS/post-MCS) panel reactive antibodies (PRA) or only negative post-MCS PRAs. ⋯ By multivariable analysis, the association of sensitization with older age at MCS (p = 0.076) and history of homograft (p = 0.064) approached significance. Pediatric patients supported with MCS are at low risk of developing HLA sensitization. Diagnosis, MCS duration, and volume of transfused blood products do not appear to be associated with HLA sensitization, but there is a suggestion of an association with older age at MCS and history of a homograft.
-
Percutaneous continuous-flow (CF) micro axial blood pumps, like the Impella 5.0, are commonly used for short-term (ST) mechanical circulatory support in patients with acute decompensated heart failure. The Impella device often serves as a bridge to implantation of a long-term (LT) CF left ventricular assist device (CF-LVAD), such as the centrifugal-flow HeartWare (HVAD). All patients supported with axial CF-LVADs develop acquired von Willebrand syndrome (AVWS) as a result of mechanical shear stress. ⋯ Bleeding events associated with AVWS have been reported in patients supported with LT CF-LVADs; however, the relation between early perioperative bleeding complications and AVWS remains poorly characterized in ST CF-LVADs. We sought to describe the relation between the development of AVWS and excessive intraoperative bleeding in a patient who was sequentially bridged with an ST micro axial device to a LT centrifugal CF-LVAD. This case highlights the importance of monitoring these hemostatic changes when bridging to LT CF-LVADs.
-
It has been suggested that pulsatile blood flow is superior to continuous flow (CF) in cardiopulmonary bypass (CPB). However, adoption of pulsatile flow (PF) technology has been limited because of practicality and complexity of creating a consistent physiologic pulse. A pediatric pulsatile rotary ventricular pump (PRVP) was designed to address this problem. ⋯ Pressure and flow waveforms demonstrated significant pulsatility in the PRVP setup compared with CF at all tested conditions. Measurement of hemodynamic energy data, including the percentage pulsatile energy and the surplus hydraulic energy, also revealed a significant increase in pulsatility with the PRVP (p < 0.001). The PRVP creates physiologically significant PF, similar to the pulsatility of a native heart, and has the potential to be easily implemented in pediatric CPB.