Platelets
-
Ticagrelor is a novel direct-acting P2Y12 receptor antagonist used for preventing atherothrombotic events in patients with acute coronary syndromes (ACS). The current recommended dose is 90 mg bid, but a low dose of ticagrelor has not been previously studied in Chinese ACS patients. Therefore, we performed this study to observe the different effects of half- and standard-dose ticagrelor on platelet aggregation in Chinese patients with NSTE-ACS. ⋯ There were no significant differences in PRU and IPA between the two ticagrelor groups (P = 0.3085 and 0.4028, respectively). HPR rates were significantly lower in the two ticagrelor groups (0% for both) than those in the clopidogrel group (35%). In conclusion, half-dose ticagrelor had a similar inhibitory effect on platelet aggregation as standard-dose ticagrelor in Chinese patients with NSTE-ACS, which was significantly stronger than that of clopidogrel.
-
Cangrelor is a rapid-acting, direct-binding, and reversible P2Y12 antagonist which has been studied for use during percutaneous coronary intervention (PCI) in patients with or without pretreatment with an oral P2Y12 antagonist. As cangrelor is administered intravenously, it is necessary to switch to an oral P2Y12 antagonist following PCI, such as the thienopyridines clopidogrel, and prasugrel or the non-pyridine ticagrelor. Previous studies have suggested a negative pharmacodynamic interaction between cangrelor and thienopyridines. ⋯ The thienopyridine AMs had limited ability to compete with cangrelor for binding to P2Y12 (% P2Y12 receptor blockade after co-incubation with cangrelor 1000 nmol/L: 11.7% for clopidogrel AM 3 µmol/L; 34.1% for prasugrel AM 3 µmol/L). In conclusion, in vitro cangrelor strongly inhibits the binding of clopidogrel and prasugrel AMs to the P2Y12 receptor, consistent with the previous observation of a negative pharmacodynamic interaction. Care may need to be taken to not overlap exposure to thienopyridine AMs and cangrelor in order to reduce the risk of thrombotic complications following PCI.
-
Platelet function tests are suggested to assess platelet reactivity before cardiac and major non-cardiac surgery. Different point-of-care platelet function tests are available. Among these, electric impedance platelet aggregometry (EIPA) (Multiplate®, MP) is one of the most widely used techniques. ⋯ Platelet function assessment with RP greatly differs from the equivalent MP measure, and no correction value can be applied due to the low level of precision. This applies both to ADPtest and TRAPtest. The MP ADPtest is more reliable for platelet reactivity after discontinuation of P2Y12 receptor inhibitors.
-
Managing bleeding in patients receiving P2Y12 inhibitors is challenging. Few data are available regarding the efficacy of platelet transfusion in patients treated with prasugrel or ticagrelor. The aim of this study was to evaluate the minimal amount of platelet supplementation (in terms of ratio of non-inhibited platelets to inhibited platelets) necessary to restore platelet reactivity in platelet-rich plasma (PRP) of patients treated with aspirin and a prasugrel or ticagrelor loading dose for an acute coronary syndrome. ⋯ In conclusions, ex vivo addition of non-inhibited platelets significantly improved ADP-Aggmax in patients treated with prasugrel with a dose-dependent effect. There was no evidence of such a reversal in patients treated with ticagrelor. These results suggest that platelet transfusion may be more effective in blunting bleeding in patients treated with prasugrel, than those treated with ticagrelor.
-
Storage impairs platelet function. It was hypothesized that multiple electrode aggregometry in vitro could be used to follow aggregability in platelet concentrates over time and that the results predict the efficacy of platelet transfusion in an ex vivo transfusion model. In vitro platelet aggregability was assessed in apheresis and pooled buffy coat platelet concentrates (BCs) (n = 13 each) using multiple electrode aggregometry with different agonists 1, 3, 5 and 7 days after preparation. ⋯ The same pattern was observed after ex vivo addition of apheresis and pooled BCs to whole blood samples. The best correlation between in vitro aggregability and changes in aggregation after addition was achieved with collagen as agonist (r = 0.67, p < 0.001). In conclusion, multiple electrode aggregometry can be used to follow aggregability in platelet concentrates in vitro, and the results predict with moderate accuracy changes in aggregation after addition of platelet concentrate to whole blood samples.