Cell transplantation
-
Cell transplantation · Jul 2017
Neural Stem Cell Transplantation Is Associated with Inhibition of Apoptosis, Bcl-xL Upregulation, and Recovery of Neurological Function in a Rat Model of Traumatic Brain Injury.
Traumatic brain injury (TBI) is a common disease that usually causes severe neurological damage, and current treatment is far from satisfactory. The neuroprotective effects of neural stem cell (NSC) transplantation in the injured nervous system have largely been known, but the underlying mechanisms remain unclear, and their limited sources impede their clinical application. Here, we established a rat model of TBI by dropping a weight onto the cortical motor area of the brain and explored the effect of engrafted NSCs (passage 3, derived from the hippocampus of embryonic 12- to 14-d green fluorescent protein transgenic mice) on TBI rats. ⋯ Bcl-xL overexpression not only resulted in a significant improvement in neurological function but also inhibits cell apoptosis, as compared with the TBI rats, and exhibits the same effects as the administration of NSC. The present study therefore indicated that NSC transplantation could promote the recovery of TBI rats in a manner similar to that of Bcl-xL overexpression. Therefore, Bcl-xL overexpression, to some extent, could be considered as a useful strategy to replace NSC grafting in the treatment of TBI in future clinical practices.
-
Cell transplantation · Apr 2017
Repetitive and Prolonged Omega-3 Fatty Acid Treatment After Traumatic Brain Injury Enhances Long-Term Tissue Restoration and Cognitive Recovery.
Traumatic brain injury (TBI) is one of the most disabling clinical conditions that could lead to neurocognitive disorders in survivors. Our group and others previously reported that prophylactic enrichment of dietary omega-3 polyunsaturated fatty acids (n-3 PUFAs) markedly ameliorate cognitive deficits after TBI. However, it remains unclear whether a clinically relevant therapeutic regimen with n-3 PUFAs administered after TBI would still offer significant improvement of long-term cognitive recovery. ⋯ Among all mice receiving post-TBI n-3 PUFA treatments, the combined treatment of fish oil dietary supplement and n-3 PUFA injections demonstrated a reproducible beneficial effect in attenuating cognitive deficits although without reducing gross tissue loss. Mechanistically, the combined treatment promoted post-TBI restorative processes in the brain, including generation of immature neurons, microvessels, and oligodendrocytes, each of which was significantly correlated with the improved cognitive recovery. These results indicated that repetitive and prolonged n-3 PUFA treatments after TBI are capable of enhancing brain remodeling and could be developed as a potential therapy to treat TBI victims in the clinic.
-
Cell transplantation · Feb 2017
Human Adipose-Derived Stem Cells Suppress Elastase-Induced Murine Abdominal Aortic Inflammation and Aneurysm Expansion Through Paracrine Factors.
Abdominal aortic aneurysm (AAA) is a potentially lethal disease associated with immune activation-induced aortic degradation. We hypothesized that xenotransplantation of human adipose-derived stem cells (hADSCs) would reduce aortic inflammation and attenuate expansion in a murine AAA model. Modulatory effects of ADSCs on immune cell subtypes associated with AAA progression were investigated using human peripheral blood mononuclear cells (hPBMNCs) cocultured with ADSCs. ⋯ Intravenously injected ADSCs transiently engrafted in the lung on day 1 without aortic engraftment at any time point. In conclusion, ADSCs exhibit pleiotropic immunomodulatory effects in vitro as well as in vivo during the development of AAA. The temporal evolution of these effects systemically as well as in aortic tissue suggests that ADSCs induce a sequence of anti-inflammatory cellular events mediated by paracrine factors, which leads to amelioration of AAA progression.
-
Cell transplantation · Feb 2017
Human Recombinant Antithrombin (ATryn®) Administration Improves Survival and Prevents Intravascular Coagulation After Intraportal Islet Transplantation in a Piglet Model.
Human islet transplantation is a viable treatment option for type 1 diabetes mellitus (T1DM). However, pancreatic islet inflammation after transplantation induced by innate immune responses is likely to hinder graft function. This is mediated by incompatibility between islets and the blood interface, known as instant blood-mediated inflammatory reaction (IBMIR). ⋯ However, DIC was only observed in the control group, an effect that was suppressed after ATryn® administration. ATryn® administration increased antithrombin activity by 800%, which remained at 200% for the remaining period of the study, without any hemorrhagic complications. These studies suggest that coadministration of ATryn® and pancreatic islets via intraportal transplantation may be a valuable therapeutic approach for DIC without risk for islets and subjects.
-
Cell transplantation · Oct 2016
Effects of the Post-Spinal Cord Injury Microenvironment on the Differentiation Capacity of Human Neural Stem Cells Derived from Induced Pluripotent Stem Cells.
Spinal cord injury (SCI) causes loss of neural functions below the level of the lesion due to interruption of spinal pathways and secondary neurodegenerative processes. The transplant of neural stem cells (NSCs) is a promising approach for the repair of SCI. Reprogramming of adult somatic cells into induced pluripotent stem cells (iPSCs) is expected to provide an autologous source of iPSC-derived NSCs, avoiding the immune response as well as ethical issues. ⋯ At the final time point, most grafted cells differentiated to neural and astroglial lineages, but not into oligodendrocytes, while some grafted cells remained undifferentiated and proliferative. The proinflammatory tissue microenviroment of the injured spinal cord induced proliferation of the grafted cells and, therefore, there are possible risks associated with iPSC-derived NSC transplantation. New approaches are needed to promote and guide cell differentiation, as well as reduce their tumorigenicity once the cells are transplanted at the lesion site.