Human molecular genetics
-
Human molecular genetics · Oct 2000
Mdx mice inducibly expressing dystrophin provide insights into the potential of gene therapy for duchenne muscular dystrophy.
Duchenne muscular dystrophy (DMD) is an X-linked recessive disease caused by the lack of expression of the dystrophin protein in muscle tissues. We genetically engineered a mouse model (mdx) of DMD that allowed for the high level and inducible transcription of a dystrophin mini-gene. This was achieved via the tetracycline-responsive transactivator (tTA) system. ⋯ Persistent detection of dystrophin was also accompanied by a prolonged protection of the muscle cells from the onset of dystrophy. The findings demonstrated that somatic transfer of the dystrophin gene not only may allow for the prevention of muscular dystrophy in multiple muscle groups, but also may be accompanied by persistent efficacy, secondary to the long-term functional stability of the dystrophin protein in vivo. This model should be useful in future studies concerning the potential of genetic therapy for DMD, as well as other muscle disorders.
-
Human molecular genetics · Jun 2000
A novel ryanodine receptor mutation and genotype-phenotype correlation in a large malignant hyperthermia New Zealand Maori pedigree.
Malignant hyperthermia (MH) is a pharmacogenetic disorder that predisposes to a sometimes fatal hypermetabolic reaction to halogenated anaesthetics. MH is considered to originate from abnormal regulation of skeletal muscle Ca(2+) release. Current diagnosis of MH susceptibility (MHS) relies on in vitro contracture testing (IVCT) of skeletal muscle. ⋯ The relationship between the IVCT response and genotype was explored and showed that as IVCT diagnostic cut-off points were made increasingly stringent, the number of MHS discordants decreased with complete concordance between the presence or absence of the C14477T mutation and MHS and MH normal phenotypes, respectively, using a cut-off of 1.2 g tension at 2.0 mM caffeine and 1.8 g tension at 2.0% halothane. Many MHS pedigrees investigated have been excluded from linkage to the RYR1 gene on the basis of a small number of recombinants; however, the linkage analysis reported here suggests that other recombinant families excluded from linkage to the RYR1 gene may actually demonstrate linkage as the number of members tested within the pedigrees increases. The high number of discordants observed using the standardized diagnostic cut-off points is likely to reflect the presence of a second MHS susceptibility locus in the pedigree.
-
Human molecular genetics · Oct 1999
Case ReportsScreening of the ryanodine receptor gene in 105 malignant hyperthermia families: novel mutations and concordance with the in vitro contracture test.
Malignant hyperthermia (MH) in man is an autosomal dominant disorder of skeletal muscle Ca(2+)-regulation. During anesthesia in predisposed individuals, it is triggered by volatile anesthetics and depolarizing muscle relaxants. In >50% of the families, MH susceptibility is linked to the gene encoding the skeletal muscle ryanodine receptor (RYR1), the calcium release channel of the sarcoplasmic reticulum, on chromosome 19q12-13.2. ⋯ Two novel mutations, Thr-2206-Arg and Arg-2454-Cys were detected, each in a single pedigree. In the 109 individuals of the 25 families with RYR1 mutations cosegregation between genetic result and IVCT was almost perfect, only three genotypes were discordant with the IVCT phenotypes, suggesting a true sensitivity of 98.5% and a specificity of minimally 81.8% for this test. Screening of the transmembraneous region of RYR1 did not yield a new mutation confirming the cytosolic portion of the protein to be of main functional importance for disease pathogenesis.
-
Human molecular genetics · Aug 1999
PTEN mutation spectrum and genotype-phenotype correlations in Bannayan-Riley-Ruvalcaba syndrome suggest a single entity with Cowden syndrome.
Germline mutations in the tumour suppressor gene PTEN have been implicated in two hamartoma syndromes that exhibit some clinical overlap, Cowden syndrome (CS) and Bannayan-Riley-Ruvalcaba syndrome (BRR). PTEN maps to 10q23 and encodes a dual specificity phosphatase, a substrate of which is phosphatidylinositol 3,4,5-triphosphate, a phospholipid in the phosphatidylinositol 3-kinase pathway. CS is characterized by multiple hamartomas and an increased risk of benign and malignant disease of the breast, thyroid and central nervous system, whilst the presence of cancer has not been formally documented in BRR. ⋯ Comparisons between BRR and a previously studied group of 37 CS families suggested an increased likelihood of identifying a germline PTEN mutation in families with either CS alone or both CS and BRR when compared with BRR alone ( P = 0.002). Among CS, BRR and BRR/CS overlap families that are PTEN mutation positive, the mutation spectra appear similar. Thus, PTEN mutation-positive CS and BRR may be different presentations of a single syndrome and, hence, both should receive equal attention with respect to cancer surveillance.
-
Human molecular genetics · Jul 1998
Modification of splicing in the dystrophin gene in cultured Mdx muscle cells by antisense oligoribonucleotides.
Deletions and point mutations in the gene encoding the cytoskeletal protein dystrophin and its isoforms cause either the severe progressive myopathy Duchenne muscular dystrophy (DMD) or the milder Becker muscular dystrophy (BMD), largely depending on whether the reading frame is lost or maintained respectively. Frameshift mutations tend to result in a lack of dystrophin at the sarcolemma, destabilization of the membrane and degeneration of skeletal muscle. The mdx mouse is a valuable animal model of DMD as it bears a nonsense point mutation in exon 23 of the murine DMD gene leading to an absence of dystrophin expression in the muscle sarcolemma and muscular dystrophy. ⋯ Dystrophin expression was observed in the sarcolemma of transfected mdx myotubes after transfection by an oligonucleotide complementary to the 3' splice site of murine dystrophin intron 22. Direct sequencing of RT-PCR products from these cells revealed precise splicing of exon 22 to exon 30, skipping the mutant exon and creating a novel in-frame dystrophin transcript. As patients with comparable in-frame internal deletions show relatively mild myopathic symptoms, this may in the future offer a therapeutic approach for DMD, as well as for other inherited disorders.