Mediators of inflammation
-
Mediators of inflammation · Jan 2018
Soluble Interleukin-2 Receptor: A Potential Marker for Monitoring Disease Activity in IgG4-Related Disease.
IgG4-related disease (IgG4-RD) is a fibroinflammatory condition. T-cells play a crucial role in the pathogenesis, and therefore, serum soluble interleukin-2 receptor (sIL-2R) may be a potential biomarker. ⋯ Serum sIL-2R is elevated in IgG4-RD reflecting the inflammatory process with enhanced T-cell activation. Furthermore, serum sIL-2R might serve as a potential marker of response to treatment in IgG4-RD.
-
Mediators of inflammation · Jan 2018
Shock Wave Therapy Enhances Mitochondrial Delivery into Target Cells and Protects against Acute Respiratory Distress Syndrome.
This study tested the hypothesis that shock wave therapy (SW) enhances mitochondrial uptake into the lung epithelial and parenchymal cells to attenuate lung injury from acute respiratory distress syndrome (ARDS). ARDS was induced in rats through continuous inhalation of 100% oxygen for 48 h, while SW entailed application 0.15 mJ/mm2 for 200 impulses at 6 Hz per left/right lung field. ⋯ The same profile was also seen for fibrosis/collagen deposition, levels of biomarkers of oxidative stress (NOX-1/NOX-2/oxidized protein), inflammation (MMP-9/TNF-α/NF-κB/IL-1β/ICAM-1), apoptosis (cleaved caspase 3/PARP), fibrosis (Smad3/TGF-β), mitochondrial damage (cytosolic cytochrome c) (all p < 0.0001), and DNA damage (γ-H2AX+), and numbers of parenchymal inflammatory cells (CD11+/CD14+/CD40L+/F4/80+) (p < 0.0001). These results suggest that SW-assisted Mito therapy effectively protects the lung parenchyma from ARDS-induced injury.
-
Mediators of inflammation · Jan 2018
Methylene Blue Attenuates Lung Injury Induced by Hindlimb Ischemia Reperfusion in Rats.
This study was aimed to investigate the protective effect of methylene blue against lung injury induced by reperfusion of ischemic hindlimb in a rat model. ⋯ Methylene blue attenuates lung injury induced by hindlimb IR in rats, at least in part, by inhibiting oxidative stress.
-
Mediators of inflammation · Jan 2018
Lactate as a Potential Biomarker of Sepsis in a Rat Cecal Ligation and Puncture Model.
We attempted to investigate whether blood lactate is a useful biomarker for sepsis in a rat cecal ligation and puncture (CLP) model. Male Sprague-Dawley rats underwent approximately 75% cecum ligation and two punctures to induce high-grade sepsis. A lactate of 1.64 mmol/L (Youden score of 0.722) was selected as the best cutoff value to predict the onset of sepsis after CLP exposure; 46 of 50 rats who survived 24 hours after the CLP were divided into the L group (lactate < 1.64 mmol/L) and M group (lactate ≥ 1.64 mmol/L). ⋯ Worsen PaO2/FiO2, microcirculations, and mean arterial pressure were observed in the M group. More severe damage in major organs was confirmed by histopathological scores in the M group compared with the L group. In conclusion, lactate ≥ 1.64 mmol/L might serve as a potential biomarker to identify the onset of sepsis in a rat CLP model.
-
Mediators of inflammation · Jan 2018
ReviewMaresins: Specialized Proresolving Lipid Mediators and Their Potential Role in Inflammatory-Related Diseases.
Acute inflammatory responses are host-protective and normally self-limited; these responses can maintain cell homeostasis and promote defense against various infections and damage factors. However, when improperly managed or inappropriately activated, acute inflammation can lead to persistent and uncontrolled chronic inflammation, which is associated with many other chronic diseases including cardiovascular disease and metabolic disease. ⋯ A new family of anti-inflammatory and proresolving lipid mediators have recently been reported, known as maresins, which are biosynthesized from docosahexaenoic acid (DHA) by macrophages, have a conjugated double-bond system, and display strong anti-inflammatory and proresolving activity. Here, we review the biological actions, pathways, and mechanisms of maresins, which may play pivotal roles in the resolution of inflammation.