Methods in molecular biology
-
Septic syndromes represent a major, although largely under-recognized, healthcare problem worldwide accounting for thousands of deaths every year. Although flow cytometry (FCM) remains a relatively confidential diagnostic tool, it is useful at every step of intensive care unit (ICU) patients' management. This review will focus on biomarkers measurable by FCM on a routine standardized basis and usable for the diagnosis of sepsis and for prediction of adverse outcome, occurrence of secondary nosocomial infections or guidance of putative immunotherapy relative to innate and adaptive immune dysfunctions in ICU patients. ⋯ In the specific clinical context of ICU patients' monitoring, the increasing potential of FCM is further illustrated by the use of the biomarkers listed above as stratification tools in preliminary clinical studies. The next critical step is to use these standardized FCM protocols in large multicentric clinical trials testing individualized immunotherapy. Importantly, many other markers of immune dysfunction are currently under development that could further enable the administration of targeted individualized therapy in ICU patients.
-
Mouse embryonic stem cells (mESCs) were first derived and cultured almost 30 years ago and ever since have been valuable tools for creating knockout mice and for studying early mammalian development. More recently (1998), human embryonic stem cells (hESCs) have been derived from blastocysts, and numerous methods have evolved to culture hESCs in vitro in both complex and defined media. hESCs are especially important at this time as they could potentially be used to treat degenerative diseases and to access the toxicity of new drugs and environmental chemicals. For both human and mouse ESCs, fibroblast feeder layers are often used at some phase in the culturing protocol. ⋯ These basic protocols are intended for researchers wanting to develop stem cell research in their labs. These protocols have been tested in our laboratory and work well. They can be modified and adapted for any relevant user's particular purpose.
-
For certain applications, particularly experiments involving high-resolution imaging, it is necessary to culture cells on glass slides or cover glasses. This chapter describes techniques for successfully growing human embryonic stem cells (hESCs) on glass surfaces under three different conditions - serum-containing, serum-free, and following single-cell dissociation. It is anticipated that these techniques will extrapolate to other types of pluripotent stem cells such as induced pluripotent stem cells (iPSCs) and embryonic germ cells (EGCs).
-
Exon skipping is currently one of the most promising molecular therapies for Duchenne muscular -dystrophy (DMD). We have recently developed multiple exon skipping targeting exons 6 and 8 in -dystrophin mRNA of canine X-linked muscular dystrophy (CXMD), an animal model of DMD, which exhibits severe dystrophic phenotype in skeletal muscles and cardiac muscle. We have induced efficient exon skipping both in vitro and in vivo by using cocktail antisense 2'O-methyl oligonucleotides (2'OMePS) and cocktail phosphorodiamidate morpholino oligomers (morpholinos, or PMOs) and ameliorated phenotype of dystrophic dogs by systemic injections. The multiple exon skipping (double exon skipping) shown here provides the prospect of choosing deletions that optimize the functionality of the truncated dystrophin protein for DMD patients by using a common cocktail that could be validated as a single drug and also potentially applicable for more than 90% of DMD patients.
-
Stem cell culture systems that rely on undefined animal-derived components introduce variability to the cultures and complicate their therapeutic use. The derivation of human embryonic stem cells and the development of methods to produce induced pluripotent stem cells combined with their potential to treat human diseases have accelerated the drive to develop xenogenic-free, chemically defined culture systems that support pluripotent self-renewal and directed differentiation. In this chapter, we describe four xeno-free culture systems that have been successful in supporting undifferentiated growth of hPSCs as well as methods for xeno-free subculture and cryopreservation of hPSCs. Each culture system consists of a xeno-free growth medium and xeno-free substratum: (1) TeSR2™ with human recombinant laminin (LN-511); (2) NutriStem™ with LN-511; (3) RegES™ with human foreskin fibroblasts (hFFs); (4) KO-SR Xeno-Free™/GF cocktail with CELLstart™ matrix.