Methods in molecular biology
-
Even though it is a pandemic health problem worldwide, the pathogenesis of obesity is poorly understood. Recently, emerging studies verified that microRNAs (miRNAs) are involved in complicated metabolic processes including adipocyte differentiation, fat cell formation (adipogenesis), obesity-related insulin resistance and inflammation. ⋯ MiRNAs may play an important part in regulating metabolic functions in adipose tissues and, by extension, obesity and its associated disorders. Consequently, they may be potential candidates for therapeutic targets and biomarkers.
-
In various biomedical applications that collect, handle, and manipulate data, the amounts of data tend to build up and venture into the range identified as bigdata. In such occurrences, a design decision has to be taken as to what type of database would be used to handle this data. ⋯ However, it still has paramount importance to understand the interrelation that exists between biomedical big data and relational databases. This chapter will review the pros and cons of using relational databases to store biomedical big data that previous researches have discussed and used.
-
Protein post-translational modifications (PTMs) are crucial for signal transduction in cells. In order to understand key cell signaling events, identification of functionally important PTMs, which are more likely to be evolutionarily conserved, is necessary. In recent times, high-throughput mass spectrometry (MS) has made quantitative datasets in diverse species readily available, which has led to a growing need for tools to facilitate cross-species comparison of PTM data. ⋯ Here, we describe an automated web-based tool, PhosphOrtholog, that accurately maps annotated and novel orthologous PTM sites from high-throughput MS-based experimental data obtained from different species without relying on existing PTM databases. Identification of conserved PTMs across species from large-scale experimental data increases our knowledgebase of evolutionarily conserved and functional PTM sites that influence most biological processes. In this Chapter, we illustrate with examples how to use PhosphOrtholog to map novel PTM sites from cross-species MS-based phosphoproteomics data.
-
In this chapter we describe the workflow we use for labeled quantitative proteomics analysis using tandem mass tags (TMT) starting with the sample preparation and ending with the multivariate analysis of the resulting data. We detail the step-by-step process from sample processing, labeling, fractionation, and data processing using Proteome Discoverer through to data analysis and interpretation in the context of a multi-run experiment. The final analysis and data interpretation rely on an R package we call TMTPrepPro, which are deployed on a local GenePattern server, and used for generating various outputs which are also outlined herein.
-
A true and accurate bottom-up global proteomic measurement will only be achieved when all proteins in a sample can be digested efficiently and at least some peptides recovered on which to base an estimate of abundance. Integral membrane proteins make up around one-third of the proteome and require specialized protocols if they are to be successfully solubilized for efficient digestion by the enzymes used in bottom-up proteomics. ⋯ A subset of peptides is purified by reverse-phase solid-phase extraction and fractionated by strong-cation exchange prior to nano-liquid chromatography with data-dependent tandem mass spectrometry. For quantitative proteomics experiments a protocol is described for stable-isotope coding of peptides using dimethylation of primary amines allowing for three-way sample multiplexing.