Methods in molecular biology
-
Protein post-translational modifications (PTMs) are crucial for signal transduction in cells. In order to understand key cell signaling events, identification of functionally important PTMs, which are more likely to be evolutionarily conserved, is necessary. In recent times, high-throughput mass spectrometry (MS) has made quantitative datasets in diverse species readily available, which has led to a growing need for tools to facilitate cross-species comparison of PTM data. ⋯ Here, we describe an automated web-based tool, PhosphOrtholog, that accurately maps annotated and novel orthologous PTM sites from high-throughput MS-based experimental data obtained from different species without relying on existing PTM databases. Identification of conserved PTMs across species from large-scale experimental data increases our knowledgebase of evolutionarily conserved and functional PTM sites that influence most biological processes. In this Chapter, we illustrate with examples how to use PhosphOrtholog to map novel PTM sites from cross-species MS-based phosphoproteomics data.
-
Post-translational modifications (PTMs) are an important source of protein regulation; they fine-tune the function, localization, and interaction with other molecules of the majority of proteins and are partially responsible for their multifunctionality. Usually, proteins have several potential modification sites, and their patterns of occupancy are associated with certain functional states. These patterns imply cross talk among PTMs within and between proteins, the majority of which are still to be discovered. Several methods detect associations between PTMs; these have recently combined into a global resource, the PTMcode database, which contains already known and predicted functional associations between pairs of PTMs from more than 45,000 proteins in 19 eukaryotic species.
-
Allergic asthma, caused by inhaled allergens such as house dust mite or grass pollen, is characterized by reversible airway obstruction, associated with an eosinophilic inflammation of the airways, as well as airway hyper responsiveness and remodeling. The inhaled allergens trigger a type-2 inflammatory response with involvement of innate lymphoid cells (ILC2) and Th2 cells, resulting in high production of immunoglobulin E (IgE) antibodies. Consequently, renewed allergen exposure results in a classic allergic response with a distinct early and late phase, both resulting in bronchoconstriction and shortness of breath. ⋯ Finally, mice are challenged by three intranasal allergen administrations. We will describe the protocols as well as the most important read-out parameters including measurement of invasive lung function measurements, serum immunoglobulin levels, isolation of broncho-alveolar lavage fluid (BALF), and preparation of cytospins. Moreover, we describe how to restimulate lung single cell suspensions, perform flow cytometry measurements to identify populations of relevant immune cells, and perform ELISAs and Luminex assays to measure the cytokine concentrations in BALF and lung tissue.
-
Exon-skipping therapy is an emerging approach that uses synthetic DNA-like molecules called antisense oligonucleotides (AONs) to splice out frame-disrupting parts of mRNA, restore the reading frame, and produce truncated yet functional proteins. Multiple exon skipping utilizing a cocktail of AONs can theoretically treat 80-90% of patients with Duchenne muscular dystrophy (DMD). The success of multiple exon skipping by the systemic delivery of a cocktail of AONs called phosphorodiamidate morpholino oligomers (PMOs) in a DMD dog model has made a significant impact on the development of therapeutics for DMD, leading to clinical trials of PMO-based drugs. Here, we describe the systemic delivery of a cocktail of PMOs to skip multiple exons in dystrophic dogs and the evaluation of the efficacies and toxicity in vivo.
-
Normal cellular functioning is maintained by macromolecular machines that control both core and specialized molecular tasks. These machines are in large part multi-subunit protein complexes that undergo regulation at multiple levels, from expression of requisite components to a vast array of post-translational modifications (PTMs). ⋯ Here we provide a framework for systematically studying these PTMs in the context of global protein-protein interaction networks. This analytical framework allows insight into which functions specific PTMs tend to cluster in, and furthermore which complexes either single or multiple PTM signaling pathways converge on.