Methods in molecular biology
-
Protocols for High-Resolution FluoRespirometry of intact cells, permeabilized cells, permeabilized muscle fibers, isolated mitochondria, and tissue homogenates offer sensitive diagnostic tests of integrated mitochondrial function using standard cell culture techniques, small needle biopsies of muscle, and mitochondrial preparation methods. Multiple substrate-uncoupler-inhibitor titration (SUIT) protocols for analysis of oxidative phosphorylation (OXPHOS) improve our understanding of mitochondrial respiratory control and the pathophysiology of mitochondrial diseases. Respiratory states are defined in functional terms to account for the network of metabolic interactions in complex SUIT protocols with stepwise modulation of coupling control and electron transfer pathway states. ⋯ ET pathways with electron entry separately through NADH (pyruvate and malate or glutamate and malate) or succinate (succinate and rotenone) restrict ET capacity and artificially enhance flux control upstream of the Q-cycle, providing diagnostic information on specific ET-pathway branches. O2 concentration is maintained above air saturation in protocols with permeabilized muscle fibers to avoid experimental O2 limitation of respiration. Standardized two-point calibration of the polarographic oxygen sensor (static sensor calibration), calibration of the sensor response time (dynamic sensor calibration), and evaluation of instrumental background O2 flux (systemic flux compensation) provide the unique experimental basis for high accuracy of quantitative results and quality control in High-Resolution FluoRespirometry.
-
Quorum sensing (QS) systems play global regulatory roles in bacterial virulence. They synchronize the expression of multiple virulence factors and they control and modulate bacterial antibiotic tolerance systems and host defense mechanisms. ⋯ This chapter describes methods to study bacterial pathogenesis in murine acute and persistent/relapsing infection models, using the Gram-negative bacterial pathogen Pseudomonas aeruginosa as an example. These infection models can be used to probe bacterial virulence functions and in mechanistic studies, as well as for the assessment of the therapeutic potential of antibacterials, including anti-virulence agents.
-
Exon skipping therapy using synthetic DNA-like molecules called antisense oligonucleotides (ASOs) is a promising therapeutic candidate for overcoming the dystrophin mutation that causes Duchenne muscular dystrophy (DMD). This treatment involves splicing out the frame-disrupting segment of the dystrophin mRNA, which restores the reading frame and produces a truncated yet functional dystrophin protein. Phosphorodiamidate morpholino oligomer (PMO) is the safest ASO for patients among ASOs and has recently been approved under the accelerated approval pathway by the U. ⋯ Food and Drug Administration (FDA) as the first drug for DMD. Here, we describe the methodology and protocol of PMO transfection and evaluation of the exon skipping efficacy in the mdx52 mouse, an exon 52 deletion model of DMD produced by gene targeting. The mdx52 mouse model offers advantages over the mdx mouse, a spontaneous DMD model with a nonsense mutation in exon 23, in terms of the deletion in a hotspot of deletion mutations in DMD patients, the analysis of caveolae and also Dp140 and Dp260, shorter dystrophin isoforms.
-
Exon skipping is an emerging approach to treating Duchenne muscular dystrophy (DMD), one of the most common lethal genetic disorders. Exon skipping uses synthetic antisense oligonucleotides (AONs) to splice out frame-disrupting exon(s) of DMD mRNA to restore the reading frame of the gene products and produce truncated yet functional proteins. ⋯ Although the success of multiple exon skipping in a DMD dog model has made a significant impact on the development of therapeutics for DMD, unmodified AONs such as phosphorodiamidate morpholino oligomers (PMOs) have little efficacy in cardiac muscles. Here, we describe our technique of intravenous injection of a cocktail of peptide-conjugated PMOs (PPMOs) to skip multiple exons, exons 6 and 8, in both skeletal and cardiac muscles in dystrophic dogs and the evaluation of the efficacy and toxicity.
-
Post-bisulfite adaptor tagging (PBAT) is a highly efficient procedure to construct libraries for whole-genome bisulfite sequencing (WGBS). PBAT attaches adaptors to bisulfite-converted genomic DNA to circumvent bisulfite-induced degradation of library DNA inherent to conventional WGBS protocols. Consequently, it enables PCR-free WGBS from nanogram quantities of mammalian DNA, thereby serving as an invaluable tool for methylomics.