Methods in molecular biology
-
Fulfilling the promises of precision medicine will depend on our ability to create patient-specific treatment regimens. Therefore, being able to translate genomic sequencing into predicting how a patient will respond to a given drug is critical. In this chapter, we review common bioinformatics approaches that aim to use sequencing data to predict sample-specific drug susceptibility. ⋯ Those additional drug properties can aid in gaining higher accuracy for the identification of drug target and mechanism of action. We then progress to discuss using these targets in combination with disease-specific expression patterns, known pathways, and genetic interaction networks to aid drug choice. Finally, we conclude this chapter with a general overview of machine learning methods that can integrate multiple pieces of sequencing data along with prior drug or biological knowledge to drastically improve response prediction.
-
The adaptation of the clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR associated endonuclease 9 (CRISPR-Cas9) machinery from prokaryotic organisms has resulted in a gene editing system that is highly versatile, easily constructed, and can be leveraged to generate human cells knocked out (KO) for a specific gene. While standard transfection techniques can be used for the introduction of CRISPR-Cas9 expression cassettes to many cell types, delivery by this method is not efficient in many primary cell types, including primary human airway epithelial cells (AECs). More efficient delivery in AECs can be achieved through lentiviral-mediated transduction, allowing the CRISPR-Cas9 system to be integrated into the genome of the cell, resulting in stable expression of the nuclease machinery and increasing editing rates. ⋯ Applying these methods, we detail here our latest protocol to generate mucociliary epithelial cultures knocked out for a specific gene from donor-isolated primary human basal airway epithelial cells. This protocol includes methods to: (1) design and generate lentivirus which targets a specific gene for KO with CRISPR-Cas9 machinery, (2) efficiently transduce AECs, (3) culture and select for a bulk edited AEC population, (4) molecularly screen AECs for Cas9 cutting and specific sequence edits, and (5) further expand and differentiate edited cells to a mucociliary airway epithelial culture. The AEC knockouts generated using this protocol provide an excellent primary cell model system with which to characterize the function of genes involved in airway dysfunction and disease.
-
Spinal muscular atrophy (SMA) is an autosomal recessive disorder caused by a mutation in SMN1 that stops production of SMN (survival of motor neuron) protein. Insufficient levels of SMN results in the loss of motor neurons, which causes muscle weakness, respiratory distress, and paralysis. A nearly identical gene (SMN2) contains a C-to-T transition which excludes exon 7 from 90% of the mature mRNA transcripts, leading to unstable proteins which are targeted for degradation. ⋯ Nusinersen (Spinraza), the first FDA-approved antisense oligonucleotide drug targeting SMA, was designed based on this concept and clinical studies have demonstrated a dramatic improvement in patients. Novel chemistries including phosphorodiamidate morpholino oligomers (PMOs) and locked nucleic acids (LNAs), as well as peptide conjugates such as Pip that facilitate accurate targeting to the central nervous system, are explored to increase the efficiency of exon 7 inclusion in the appropriate tissues to ameliorate the SMA phenotype. Due to the rapid advancement of treatments for SMA following the discovery of ISS-N1, the future of SMA treatment is highly promising.
-
Antisense oligonucleotide induced exon skipping emerges as a promising therapeutic strategy for patients suffering from a devastating muscle disorder Duchenne muscular dystrophy (DMD). Systemic administration of antisense phosphorodiamidate morpholino oligomers (PMOs) targeting exons 6 and 8 in dystrophin mRNA of the canine X-linked muscular dystrophy model in Japan (CXMDJ) that lacks exon 7, restored dystrophin expression throughout skeletal muscle and ameliorated skeletal muscle pathology and function. However, the antisense PMO regime used in CXMDJ could not be considered for a direct application to DMD patients so far, because this type of mutation is quite rare. ⋯ The accompanying skipping of exon 9, which does not alter the reading frame, varied according to the cell origin. The antisense PMOs originally administered to the CXMDJ dog model were capable of inducing multi-exon skipping of the dystrophin gene on the FACS-aided MyoD-transduced fibroblasts derived from an exon 7-deleted DMD patient. These data support the suitability of dog as a laboratory model for DMD because the similarity of dystrophin sequences allowed a successful translation of the dog's PMOs to DMD patients cells.
-
Evidences from psychoneuroimmunology (PNI) and systems biology studies support a conceptual framework of "Yin-Yang dynamics" for understanding the "whole mind-body system." The Yin-Yang dynamical balances in the stress response networks may be critical for health and diseases, especially mental health and psychiatric disorders. Specifically, the neuroimmune imbalances have been found as the important features and potential biomarkers of stress, anxiety, depression, and systemic inflammation. ⋯ At the molecular and cellular levels, the imbalances in multiple networks including the cytokine and redox pathways, immune-kynurenine networks, HPA axis, and synaptic plasticity in the hypothalamus are the key factors in depression. The recognition of the neuroimmune imbalances and the restoration of the Yin-Yang dynamical balances need to become a high priority toward the development of dynamical systems medicine for psychiatric diseases including depression and schizophrenia.