Methods in molecular biology
-
Biobanking is important and fundamental for research and personalized medicine in patients with esophageal squamous cell carcinoma. The process often involves prospective collection of surgically obtained tissues (tissue banking) as well as serial blood samples (liquid biopsies) from the patients with esophageal squamous cell carcinoma. Apart from frozen tissues, formalin-fixed paraffin-embedded tissues are important sources of translational research. ⋯ The success and sustainability of the process needs proper infrastructure, advanced planning, funding, and multidisciplinary collaborations. The understanding of the principles and issues are detrimental for the success of biobanking. The technical procedures involved are standardized, complex, and time-consuming and needs coordinated taskforce.
-
The third edition of "Plant Proteomics Methods and Protocols," with the title "Advances in Proteomics Techniques, Data Validation, and Integration with Other Classic and -Omics Approaches in the Systems Biology Direction," was conceived as being based on the success of the previous editions, and the continuous advances and improvements in proteomic techniques, equipment, and bioinformatics tools, and their uses in basic and translational plant biology research that has occurred in the past 5 years (in round figures, of around 22,000 publications referenced in WoS, 2000 were devoted to plants). The monograph contains 29 chapters with detailed proteomics protocols commonly employed in plant biology research. They present recent advances at all workflow stages, starting from the laboratory (tissue and cell fractionation, protein extraction, depletion, purification, separation, MS analysis, quantification) and ending on the computer (algorithms for protein identification and quantification, bioinformatics tools for data analysis, databases and repositories). ⋯ Unfortunately, only 10% of them kindly accepted. My gratitude to those who accepted our invitation but also to those who did not, as all of them have contributed to the plant proteomics field. I will enlist, in this introductory chapter, following my own judgment, some of the relevant papers published in the past 5 years, those that have shown us how to enhance and exploit the potential of proteomics in plant biology research, without aiming at giving a too exhaustive list.
-
Endoscopic resection is commonly used for superficial squamous cell carcinoma or high-grade dysplasia of esophageal squamous cell carcinoma. The depth of invasion, clearance from resection margins, and other pathological parameters are important parameters to be examined. The depth of invasion by carcinoma is associated with the risk of lymph node metastases. In endoscopic resection of superficial squamous malignancies of the esophagus, proper pathological examination of the resected specimen could guide the management of the patients in terms of the need for additional treatment, including lymph node dissection, chemotherapy, and radiation therapies.
-
Cervical esophageal carcinoma (CEC) is rare, accounting for 2-10% of esophageal cancers and is mostly squamous cell carcinoma. Because of the anatomical proximity of CEC to larynx, surgical treatment would involve pharyngo-laryngo-esophagectomy (PLE) with inherent high mortality and morbidity. Laryngeal preservation is an important consideration, and definitive chemoradiotherapy is the recommended treatment. ⋯ Since the exact location, extent of primary and nodal metastasis varies between patients, radiotherapy treatment needs to be individualized. The optimal radiation dose for CEC is uncertain, but retrospective data suggests that higher radiation dose of at least 60 Gy is associated with better local control and survival. Advanced radiotherapy technique, like intensity modulated radiotherapy, is usually required to achieve high dose to tumor while protecting normal tissues from excessive radiation.
-
Tumor-associated antigens (TAAs) can be used as cancer markers and as signposts of therapeutic targets since their inimitable expression in cancer or significant overexpression in esophageal squamous cell carcinoma (ESCC) correlates with the initiation and progression of the diseases. Immunoblotting, also known as Western blotting or protein blotting, is a core technique in cell and molecular biology to detect proteins and glycoproteins. The technique allows detection of TAAs from complex protein samples such as in serum, aspirate, or solid tumor homogenate. ⋯ They were visualized within a gel matrix and then transferred to a supporting membrane. Finally, they are probed for binding with corresponding antibodies and identified the target proteins. Herein, we describe the Western blots analysis to detect protein or glycoprotein in samples from patients with esophageal squamous cell carcinoma (ESCC) or cells derived from ESCC.