Methods in molecular biology
-
The protocol presented was specifically optimized for in-depth analysis of the human colon mucosa proteome. After cell lysis in a sodium deoxycholate/urea buffer, a tandem digestion with Lys-C and trypsin was performed. Prior to LC-MS/MS analysis, peptides were TMT-labeled and fractionated by high pH reversed-phase spin columns. This protocol is a powerful, reproducible, sample-saving, and cost-effective option when an in-depth quantitative proteome analysis is desired.
-
Drug sensitivity testing utilizing preclinical disease models such as cancer cell lines is an important and widely used tool for drug development. Importantly, when combined with molecular data such as gene copy number variation or somatic coding mutations, associations between drug sensitivity and molecular data can be used to develop markers to guide patient therapies. ⋯ Importantly, the systematic sensitivity testing of organoid cultures to anticancer drugs identified clinical gene-drug interactions, suggestive of their potential as preclinical models for testing anticancer drug sensitivity. In this chapter, we describe how to perform medium/high-throughput drug sensitivity screens using 3D organoid cell cultures.
-
The emergence of the clustered, regularly interspaced, short palindromic repeat (CRISPR) technology provides tools for researchers to modify genomes in a specific and efficient manner. The Type II CRISPR-Cas9 system enables gene editing by directed DNA cleavage followed by either non-homologous end joining (NHEJ) or homology-directed repair (HDR). Here, we described the use of the Type II CRISPR-Cas9 system in detail from designing the guides to analyzing the desired gene disruption events.
-
ProStaR is a software tool dedicated to differential analysis in label-free quantitative proteomics. Practically, once biological samples have been analyzed by bottom-up mass spectrometry-based proteomics, the raw mass spectrometer outputs are processed by bioinformatics tools, so as to identify peptides and quantify them, by means of precursor ion chromatogram integration. ⋯ To achieve this statistical step, it is possible to rely on ProStaR, which allows the user to (1) load correctly formatted data, (2) clean them by means of various filters, (3) normalize the sample batches, (4) impute the missing values, (5) perform null hypothesis significance testing, (6) check the well-calibration of the resulting p-values, (7) select a subset of differentially abundant proteins according to some false discovery rate, and (8) contextualize these selected proteins into the Gene Ontology. This chapter provides a detailed protocol on how to perform these eight processing steps with ProStaR.
-
Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/Cas9-based technology enables efficient and precise perturbations of target genomic sites. Combining the endonuclease Cas9 and a pooled guide RNA library allows for systematic screenings of genes associated with a growth disadvantage or lethal phenotype under various conditions in organisms and tissues. Here, we describe a complete protocol for scalable CRISPR/Cas9-based dropout screening for essential genes from focused genomic regions to whole genomes.