Methods in molecular biology
-
Drug sensitivity testing utilizing preclinical disease models such as cancer cell lines is an important and widely used tool for drug development. Importantly, when combined with molecular data such as gene copy number variation or somatic coding mutations, associations between drug sensitivity and molecular data can be used to develop markers to guide patient therapies. ⋯ Importantly, the systematic sensitivity testing of organoid cultures to anticancer drugs identified clinical gene-drug interactions, suggestive of their potential as preclinical models for testing anticancer drug sensitivity. In this chapter, we describe how to perform medium/high-throughput drug sensitivity screens using 3D organoid cell cultures.
-
DNA methylation is a process by which methyl groups are added to cytosine or adenine. DNA methylation can change the activity of the DNA molecule without changing the sequence. Methylation of 5-methylcytosine (5mC) is widespread in both eukaryotes and prokaryotes, and it is a very important epigenetic modification event, which can regulate gene activity and influence a number of key processes such as genomic imprinting, cell differentiation, transcriptional regulation, and chromatin remodeling. ⋯ A number of different quantitative approaches have also been established to map the DNA epigenomes with single-base resolution, as represented by the bisulfite-based methods, such as classical bisulfite sequencing, pyrosequencing etc. These methods have been used to generate base-resolution maps of 5mC and its oxidation derivatives in genomic samples. The focus of this chapter is to provide the methodologies that have been developed to detect the cytosine derivatives in the genomic DNA.
-
DNA methylation is a conserved epigenetic modification of animal genomes, but genome methylation patterns appear surprisingly diverse in insects. Whole-genome bisulfite sequencing (WGBS) represents a sensitive and robust method for the characterization of genome-wide methylation patterns at single-base resolution. Here, we describe a step-by-step protocol for the generation and analysis of WGBS datasets using standard Illumina sequencing platforms. In comparison to whole-genome sequencing, WGBS has additional caveats that require particular attention and are highlighted in this chapter.
-
Clustered regularly interspaced short palindromic repeat (CRISPR/Cas) system has emerged as an extremely useful tool for biological research and as a potential technology for gene therapy approaches. CRISPR/Cas mediated genome editing can be used to easily and efficiently modify endogenous genes in a large variety of cells and organisms. ⋯ This chapter provides an introduction to the basis of the technology and a detail protocol for the most classic application: gene inactivation by CRISPR/Cas9 nuclease system from Streptococcus pyogenes. This workflow can be easily adapted for other CRISPR systems and applications.
-
Obsessive-compulsive disorder (OCD) can occur in several psychiatric illnesses such as autism spectrum disorders (ASD) and it is more prevalent in children. This condition is characterized by repeated and apparently meaningless behaviors such as frequent hand washing, counting, tapping, and rocking. ⋯ Therefore there is interest in developing more effective therapies for individuals suffering from these conditions. This chapter describes how to conduct the mouse marble burying test as a sensitive measure of compulsive behaviors.