Methods in molecular biology
-
The discovery of the CRISPR-Cas9 system raises hope for the treatment of many genetic disorders. We describe here an approach based on the use of a pair of single guide RNAs to form a hybrid exon that does not only restore the dystrophin gene reading frame but also results in the production of a dystrophin protein with an adequate structure of the central rod-domain, with a correct spectrin-like repeat. The therapeutic approach described here involved DMD patient cells having a deletion of exons 51-53 of the DMD gene.
-
Next-generation sequencing refers to the high-throughput DNA sequencing technologies, which are capable of sequencing large numbers of different DNA sequences in a single/parallel reaction. It is a powerful tool to identify inherited and acquired genetic alterations associated with the development of esophageal adenocarcinoma. ⋯ Thus, second-generation sequencing methods can provide a complete picture of the esophageal adenocarcinoma genome by detecting and discovering different type of alterations in the cancer. This would help in diagnostics and will further help in developing personalized medicine in esophageal adenocarcinoma.
-
The aberrant DNA methylation has been noted to occur at promoter of tumor suppressor, cell adhesion, DNA repair, and other growth regulating genes during the progression of nonneoplastic esophageal mucosa to Barrett esophagus to esophageal adenocarcinoma. Methylation-mediated silencing of individual gene or concurrent loss of a number of genes plays crucial roles in dysplasia-metaplasia-neoplasia sequence of esophageal adenocarcinoma. ⋯ There are a number of methods including bead array, PCR and sequencing, pyrosequencing, methylation-specific PCR, and PCR with high-resolution melt curve available to determine the methylation status of particular gene of interest. Herein, we describe the polymerase chain reaction followed by sequencing-based protocol for identifying DNA methylation status in esophageal adenocarcinoma.
-
DNA cytosine methylation is one of the most abundant epigenetic marks found in the plant nuclear genome. Bisulfite sequencing (BS-Seq) is the method of choice for profiling DNA cytosine methylation genome-wide at a single nucleotide resolution. ⋯ By deep sequencing of the bisulfite converted genomic DNA, the methylation level of each mappable cytosine position in the genome could be measured. In this chapter, we present a detailed 2-day protocol for performing a BS-Seq experiment and a simple bioinformatic workflow for wet lab biologists to visualize the methylation data.
-
Duchenne muscular dystrophy (DMD) is a congenital X-linked disease caused by mutations in the gene encoding the dystrophin protein, which is required for myofiber integrity. Exon skipping therapy is an emerging strategy for restoring the open reading frame of the dystrophin gene to produce functional protein in DMD patients by skipping single or multiple exons. ⋯ Our laboratory previously reported that disrupting the splicing acceptor site in exon 45 by plasmid delivery of the CRISPR-Cas9 system in iPS cells, derived from a DMD patient lacking exon 44, successfully restored dystrophin protein expression in differentiated myoblasts. Herein, we describe an optimized methodology to prepare myoblasts differentiated from iPS cells by mRNA transfection of the CRISPR-Cas9 system to skip exon 45 in myoblasts, and evaluate the restored dystrophin by RT-PCR and Western blotting.