Methods in molecular biology
-
Exon skipping is an emerging approach to treating Duchenne muscular dystrophy (DMD), one of the most common lethal genetic disorders. Exon skipping uses synthetic antisense oligonucleotides (AONs) to splice out frame-disrupting exon(s) of DMD mRNA to restore the reading frame of the gene products and produce truncated yet functional proteins. ⋯ Although the success of multiple exon skipping in a DMD dog model has made a significant impact on the development of therapeutics for DMD, unmodified AONs such as phosphorodiamidate morpholino oligomers (PMOs) have little efficacy in cardiac muscles. Here, we describe our technique of intravenous injection of a cocktail of peptide-conjugated PMOs (PPMOs) to skip multiple exons, exons 6 and 8, in both skeletal and cardiac muscles in dystrophic dogs and the evaluation of the efficacy and toxicity.
-
Preeclampsia is a relatively common pregnancy-related condition associated with serious maternal and fetal morbidity and mortality. It is now well established that anti-angiogenic sFlt1 is upregulated in preeclampsia and binds PlGF and VEGF, causing an imbalance in angiogenic factors with subsequent endothelial injury and dysfunction. ⋯ There are several automated, commercially available immunoassays capable of measuring PlGF and the sFlt1/PlGF ratio for preeclampsia diagnosis. Here we outline the methodology for using the Roche Cobas ® e 411 immunoassay platform to determine the sFlt1/PlGF ratio.
-
Antisense oligonucleotides (AONs) hold great promise for therapeutic splice-switching correction in many genetic diseases and in particular for Duchenne muscular dystrophy (DMD), where AONs can be used to reframe the dystrophin transcript and give rise to a partially deleted but yet functional dystrophin protein. Many different chemistries of AONs can be used for splice switching modulation, and some of them have been evaluated in clinical trials for DMD. ⋯ Here, we describe the methods to evaluate the potency of antisense oligonucleotides, and in particular of tricyclo-DNA (tcDNA)-AONs, a novel class of AONs which displays unique pharmacological properties and unprecedented uptake in many tissues after systemic administration. We focus on the most widely used mouse model for DMD, the mdx mouse and detail methods to analyze the skipping of the mouse exon 23 both in vitro in H2K mdx cells and in vivo in the mdx mouse model.
-
Spinal muscular atrophy (SMA) is one of the most common genetic causes of infantile death arising due to mutations in the SMN1 gene and the subsequent loss of motor neurons. With the discovery of the intronic splicing silencer N1 (ISS-N1) as a potential target for antisense therapy, several antisense oligonucleotides (ASOs) are being developed to include exon 7 in the final mRNA transcript of the SMN2 gene and thereby increasing the production of spinal motor neuron (SMN) proteins. Nusinersen (spinraza), a modified 2'-O-methoxyethyl (MOE) antisense oligonucleotide is the first drug to be approved by Food and Drug Agency (FDA) in December of 2016. Here we briefly review the pharmacological relevance of the drug, clinical trials, toxicity, and future directions following the approval of nusinersen.
-
Evidences from psychoneuroimmunology (PNI) and systems biology studies support a conceptual framework of "Yin-Yang dynamics" for understanding the "whole mind-body system." The Yin-Yang dynamical balances in the stress response networks may be critical for health and diseases, especially mental health and psychiatric disorders. Specifically, the neuroimmune imbalances have been found as the important features and potential biomarkers of stress, anxiety, depression, and systemic inflammation. ⋯ At the molecular and cellular levels, the imbalances in multiple networks including the cytokine and redox pathways, immune-kynurenine networks, HPA axis, and synaptic plasticity in the hypothalamus are the key factors in depression. The recognition of the neuroimmune imbalances and the restoration of the Yin-Yang dynamical balances need to become a high priority toward the development of dynamical systems medicine for psychiatric diseases including depression and schizophrenia.