Methods in molecular biology
-
microRNAs (miRNAs) are central regulators of gene expression. They are actively studied for their involvement in numerous physiological and pathological conditions but also as diagnostic biomarkers or promising therapeutic targets. The increased complexity of the miRNA interactomes hinders straightforward interpretation of miRNA expression differences between states and conditions. ⋯ The most commonly utilized databases and algorithms include DIANA-microT-CDS, DIANA-TarBase v7.0, DIANA-lncBase v2.0, DIANA-miRGen v3.0, DIANA-miRPath v3.0, and DIANA-mirExTra v2.0. In the presented protocol, we will utilize different online tools in order to explore miRNA functions and to identify probable targets of interest for downstream analyses and wet lab experiments. The combined use of different applications from the DIANA suite can shed light to numerous different aspects of miRNA regulation and regulatory function, without the necessity for extensive bioinformatics expertise or computational infrastructure.
-
Cell signaling and functions heavily rely on post-translational modifications (PTMs) of proteins. Their high-throughput characterization is thus of utmost interest for multiple biological and medical investigations. ⋯ However, the large and complex datasets produced pose multiple data interpretation challenges, ranging from spectral interpretation to statistical and multivariate analyses. Here, we present a typical workflow to interpret such data.
-
Comparative profiling proteomics experiments are important tools in biological research. In such experiments, tens to hundreds of thousands of peptides are measured simultaneously, with the goal of inferring protein abundance levels. ⋯ Previously we have reported the non-normal distribution of SILAC datasets, and demonstrated the permutation test to be a superior method for the statistical evaluation of non-normal peptide ratios. This chapter outlines the steps and the R scripts that can be used for performing permutation analysis with false discovery rate control via the Benjamini-Yekutieli method.
-
Post-translational modifications (PTMs) are one of the main contributors to the diversity of proteoforms in the proteomic landscape. In particular, protein phosphorylation represents an essential regulatory mechanism that plays a role in many biological processes. Protein kinases, the enzymes catalyzing this reaction, are key participants in metabolic and signaling pathways. ⋯ In this chapter, we demonstrate two text mining tools, RLIMS-P and eFIP, for the retrieval and extraction of kinase-substrate-site data and phosphorylation-dependent PPIs from the literature. These tools offer several advantages over a literature search in PubMed as their results are specific for phosphorylation. RLIMS-P and eFIP results can be sorted, organized, and viewed in multiple ways to answer relevant biological questions, and the protein mentions are linked to UniProt identifiers.
-
Recent advances in mass spectrometry based proteomic techniques and publicly available large proteomic repositories are being exploited to characterize the proteome of multiple organisms. While humongous amount of proteomic data is being acquired and analyzed, many biological questions still remain unanswered. Proteotypic peptides which uniquely represent target proteins or a protein isoform are used as an alternative strategy for protein identification in the field of immunological methods and targeted proteomic techniques. Using different computational approaches, resources and techniques used in the identification of proteotypic peptides of target proteins is discussed here.